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Hybl et al. demonstrated a technique for recording two-dimensional Fourier transform electronic correlation
and relaxation spectra based on detecting phase modulation of the signal electric field in a noncollinear
femtosecond four-wave mixing experiment. A theoretical analysis of 2D correlation and relaxation experiments
is presented for a system consisting of two electronic states each having two or more sublevels. The separation
between absorption and dispersion mode 2D spectra in these experiments is investigated in detail for nonzero
pulse duration and compared to related 2D NMR experiments based on a nonlinear optical definition of
coherence order. Phase-twisted peaks, which mix absorption and dispersion line shapes, can occur under
some circumstances. A 1D projection of the complex 2D spectrum is shown to equal the transient grating
signal field, and the real part of this projection is related to the spectrally resolved pump-probe signal.
Calculated 2D spectra for a two-level Bloch model, an underdamped Brownian oscillator, and a few models
of polar solvent dynamics based on the correlation function approach to the nonlinear response developed by
Mukamel and co-workers are presented. The real parts of the 2D spectra are primarily positive (indicative of
ground state bleaching and excited state emission) but contain negative regions arising from excitation of
coherent superposition states (e.g. vibrational wavepackets) in both the ground and excited electronic states.
Assignment of the 2D spectra displaying wavepacket motion at the vibronic level is discussed, and the
manifestations of wavepacket motion and vibrational relaxation in the 2D spectra are explored. As suggested
by Hybl et al., an increase in pulse duration is found to affect a 2D spectrum primarily as a spectral filter that
limits the range of the spectrum. The Gaussian correlation function characteristic of inertial solvent motion
is found to be faithfully reflected in a homogeneous 2D cross width which is nearly independent of pulse
duration. An alternative experimental method for obtaining only the real part of 2D spectra is proposed.

I. Introduction

Recently, there has been much interest in extending the two-
dimensional Fourier transform methods used in magnetic
resonance2,3 to electronic and vibrational spectroscopy using
coherent femtosecond excitation.1,4-10 Two-dimensional spectra
correlate molecular oscillation frequencies during two different
time intervals. Fourier transformation of a nonlinear signal with
respect to two time intervals produces a spectrum with two
frequency axes. A peak in a 2D spectrum indicates that
oscillation at ω1 during the first time interval gave rise to
oscillation atω2 during the second interval. Two-dimensional
spectra help separate and correlate peaks; Fourier transform
techniques have the advantage of molecule limited resolution
in both time and frequency. 2D FT spectroscopy has proven to
be a tremendously powerful method for NMR studies of large
molecules and biomolecules.

Recent interest in femtosecond 2D FT methods has arisen
partly from attempts to investigate systems where partially
overlapping bands and fast dynamics can combine to partly
frustrate frequency selective pump-probe experiments (e.g.
vibrational energy transfer and relaxation in liquids11 and

proteins,12 polar solvent reorganization during charge transfer,13-15

the dynamic local hydrogen-bonding structure of water,16

electronic coupling and energy transfer in aggregates17,18). The
problem arises from the Fourier transform limit imposed by the
pulses: a short pulse must have a broad spectrum. Following
the pioneering experiments of Shank and co-workers,19-21

several groups have spectrally resolved short probe pulses after
they traversed a pumped sample. This allows coherent molecular
radiation in the probe direction, which may continue after the
probe exits the sample, to set the Fourier transform limit for
probe frequency and time resolution. However, the pump pulse
still imposes an externally fixed Fourier transform limited trade-
off between time resolution and frequency resolution. Longer
pump pulses have been useful for selective excitation,21,22 but
it is difficult to distinguish among strongly coupled chromo-
phores, fast relaxation dynamics between bands during a longer
pulse, or imperfectly selective excitation caused by intrinsically
overlapping bands. 2D FT spectra could provide the pump-
probe correlation with molecule-limited resolution inboth
frequency dimensions. 2D correlation spectra should also reveal
transient inhomogeneities and distinguish distributions of single
chromophore site energies from distributions of couplings
between chromophores.

There have been a number of femtosecond experiments as a
function of two time variables. Following the practice in NMR,
only experiments with two frequency dimensions will be referred
to as two-dimensional. Ernst and co-workers suggested that
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extensions of 2D NMR to microwave and infrared spectroscopy
might be useful.23 The number of experimental and theoretical
studies of 2D spectra outside magnetic resonance is relatively
small. High-frequency resolution two-dimensional micro-
wave24,25and rotational Raman26,27correlation spectra have been
reported. Tanimura and Mukamel proposed fifth-order nonlinear
femtosecond 2D Raman vibrational spectroscopy.4 Lepetit and
Joffre demonstrated an absolute value 2D spectrum reflecting
bulk phase-matching of sum frequency mixing in a thick
potassium dihydrogen phospate (KDP) crystal.28 Tokmakoff et
al. reported 2D FT Raman vibrational spectra,5 though there is
now evidence29 that the 2D Raman spectra are dominated by
cascaded third-order nonlinear Raman signals30 which do not
provide the microscopic information the fifth-order experiments
were designed to measure. In contrast to the difference frequen-
cies and absolute value spectra recorded in the 2D femtosecond
correlation experiments,5,28 Hybl et al.1 recovered separate
absorption and dispersion 2D spectra as a function of two
electronic frequencies in a noncollinear three-pulse experiment
which produced 2D correlation spectra for zero delay between
the second and third pulses and 2D relaxation spectra for
nonzero delay. Hybl et al. also outlined a theoretical treatment
of 2D spectra in the optical Bloch limit and demonstrated a 2D
Raman-electronic correlation spectrum.1 The treatment presented
here is limited to 2D electronic spectra generated by Fourier
transformation of two time delays. Hochstrasser and co-workers
have used spectrally resolved pump-probe experiments with a
narrowband tunable pump and a broadband probe to construct
2D infrared spectra which contain both positive and negative
regions.12 Recent theoretical work has treated two-dimensional
infrared,8 terahertz,6 and electronic10 correlation spectra in
absolute value mode.

The power of 2D FT techniques over conventional techniques
such as pump-probe comes from the exploitation of coherence
and phase information. As in 1D FT spectroscopy, the frequency
resolution of 2D FT spectra is limited only by the maximum
separation between pulses used to generate the measured signal,
not by the pulse bandwidth. This completely solves the problem
of trading off time resolution for frequency resolution and opens
the door to a universal femtosecond spectrometer. Since 2D
spectra reveal correlations between transitions, 2D spectra have
approximately homogeneous line widths in each frequency
dimension.

Pump-probe techniques also suffer from an exceedingly
difficult to interpret feature, commonly referred to as the
coherence spike, when the pulses overlap. This makes it
impossible to excite selectively one band in a crowded spectrum
and follow the undistorted dynamics which give rise to the line
width of the band: they all occur during the pulse overlap. A
similar problem also plagues standard femtosecond photon echo
techniques, where the early time behavior of the correlation
function is obscured31,32by the rapid third-order free induction
decay of an inhomogeneous ensemble.

Absolute value 2D spectra combine both real absorption line
shapes and imaginary dispersion line shapes. Because dispersion
line shapes are broad, decaying as 1/(ω - ω0), absolute value
spectra are not nearly so useful as separate absorption and
dispersion spectra for the spectrally congested systems on which
2D FT spectra realize their full power. Even if a 2D spectrum
is purely absorptive or dispersive, absolute value spectra do not
reveal the signs of the peaks and thus cannot distinguish excited
state absorption from emission or reveal some of the subtler
signed features in 2D spectra to be discussed here. The design
of the 2D experiment can affect the shape of peaks in absolute

value power spectra. In order to separate the real (absorptive)
and imaginary (dispersive) contributions to 2D FT spectra, it is
absolutely necessary to measure the signal field at the sample.

To generate 2D spectra, Hybl et al.1 used the method
introduced by Gallagher et al.33 to measure the electric field of
a fully noncollinear three-pulse scattering signal at the sample.
In a three-pulse scattering experiment,34,35 pulses with wave
vectorska, kb, andkc cross in the sample and the signal radiated
into a fourth phase-matched direction with wave vectorkc +
kb - ka is detected. A macroscopically phased array of molecular
dipoles is required for radiation of a coherent pulse of light in
a given direction. The excitation pulse direction and timing can
be chosen to selectively detect the set of density matrix
coherence pathways between molecular states that yield the
required spatially dependent dipole phase.36 The pulse timing
is illustrated in Figure 1. The first pulse excites electronic dipoles
which oscillate until the arrival of the second pulse. Depending
on the timing of the second pulse, the dipole oscillation
frequency, and the spatial position, these oscillations can be
amplified (increasing the excited state population and depopulat-
ing the ground state) or suppressed (transferring all population
back to the ground state) by the second pulse. The first pulse
can be either a or b, so the delayτ ≡ tb - ta can be either
positive or negative. The first two pulses excite a spatially
periodic electronic state population grating in the sample. This
population grating produces both absorption coefficient and
refractive index gratings.37 The grating wavelength depends on
the electronic frequency and the crossing angle between pulses
a and b. The grating phase (positions of maximum excited state
population within the grating) depends on the electronic
frequency and the pulse delay. The timeT between the second
pulse (a or b) and the third pulse (c) allows vibrational
wavepacket motion and relaxation. After pulse c hits the grating,
the field radiated into the signal direction is detected as a
function of time t. If it is remembered that reradiation from
vibrating molecules can generate frequency shifts, this phase-
matched radiation can be viewed as diffraction of pulse c off
the grating excited by a and b.

Figure 1. Timing diagram. Pulses a, b, and c are distinguished by
their wave vectors. The experimentally controlled times at which the
center of each pulse arrives at the sample areta, tb, andtc. The zero of
time t is chosen to coincide with the center of pulse c (tc ≡ 0) so that
ta andtb are negative. As in 2D NMR, the time intervals between pulses
are labeled preparation (up to and including the first pulse), evolution
τ ≡ tb - ta (between the first and second pulses), mixingT ≡ min(|ta|,
|tb|) (which includes the second and third pulses), and detectiont (after
the third pulse). 2D electronic spectra are generated by Fourier
transformation of the signal field with respect tot (detection) andτ
(evolution). The positive time intervalst1, t2, andt3 between perturbation
theoretic field-matter interactions (which can occur at any time during
a pulse) appear in the double-sided Feynman diagrams representing
terms in density matrix perturbation theory and are always numbered
consecutively regardless of which pulse interacts first. The intervals
τa, τb, andτc are pulse-labeled interaction intervals used in calculating
the nonlinear polarization from the response function.

10490 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Gallagher Faeder and Jonas



For T ) 0, the pulse sequence matches 2D NMR correlation
spectroscopy (COSY),3 which is used to probe spin-spin
coupling. ForT > 0 the pulse sequence matches 2D NMR
nuclear Overhauser effect spectroscopy (NOESY),3 which is a
relaxation spectroscopy used to probe dipole-dipole spin
excitation transfer. Standard 2D NMR labels2 for the time
intervals are given in Figure 1. The acronym EASY 2D has
been proposed for this optical experiment, which is based on a
five-beam interferometer. EASY stands for echo argument
spectroscopy since the key to the experiment is recovery of
electronic frequencies by detecting phase (argument) modulation
of the echo signal field at the initial excitation frequency.1,33,38

Since this phase modulation is stored in a spatial population
grating, it can be detected even after the original electronic
coherence has completely decayed, making it possible to see
phenomena that take place over relatively long times. 2D
electronic spectra are generated by measuring the electric field
of a three-pulse scattering signal and Fourier transforming with
respect to the detection time after the third pulse,t (yielding
frequency axisωt) and the dipole evolution time between the
first and second pulses,τ (yielding frequency axisωτ).

To avoid mixing absorption and dispersion mode 2D spectra,
it is necessary to superpose equally weighted signals with equal
and opposite “orders of coherence” during the dipole evolution
period.2 The Fourier transform procedure must also be chosen
to match the experiment in order to avoid inadvertent Kramers-
Kronig transformation between absorption and dispersion mode
spectra.38 Hybl et al.1 combined a standard three-pulse echo
procedure35 for scanning continuously acrossτ ) 0 at constant
T with complex Fourier transformation over the range-∞ < τ
< ∞ to do this. A nonlinear optical definition for order of
coherence is proposed here in order to examine this procedure
in more detail.

A simple and useful (but incomplete) interpretation which
has suggested a number of correct results views the real part of
the complex 2D spectrum as showing the effect of initial
absorption at frequencyωτ on subsequent absorption and
emission at frequencyωt. A positive peak in the real part of
the spectrum indicates that excitation atωτ increases the
subsequent transmission through the sample atωt (this usage
differs in sign from typical usage in NMR). For example, if the
2D spectrum consisted of a positive ridge along the diagonal
line ωt ) -ωτ, excitation atωτ resulted in a transmission
increase only atωt ) -ωτ, indicating the sample consists of an
inhomogeneously broadened ensemble of two-level systems. The
incompleteness of this view arises when coherent excitation of
strongly coupled multilevel systems is considered: it cannot
be stated which frequency is absorbed in excitation of a coherent
superposition state. A precisely correct statement is that EASY
2D spectra reveal the effect of each initial dipole oscillation
frequency on the amplitude and phase of every final dipole
oscillation frequency. In some cases, the connection between
real/imaginary and absorption/dispersion is not yet clear. The
2D spectra are then labeled only real or imaginary and no
assignment to absorptive or dispersive parts of the third order
susceptibility is implied. A closely related 2D experiment
(acronym HARD 2D) is proposed to selectively detect only the
real part of the EASY 2D spectrum.

II. Theory

With the exception of a recent treatment of 2D terahertz
spectroscopy by Okumura and Tanimura,6 theoretical treatments
of 2D spectroscopy10 have assumed that delayed pulses have
the “carrier wave” form used in magnetic resonance.39 Carrier

wave delayed pulses are produced by multiplying a single
continuous (carrier) wave by a variably delayed envelope.
Optical carrier wave delayed pulses can be generated by pulse
shaping techniques.40,41In the experiments reported by Hybl et
al.,1 pulse delays were generated by moving a mirror in one
arm of an interferometer. Albrecht et al. have discussed how
the method of pulse delay generation is critical for phase-
resolved nonlinear optics and recovery of electronic frequencies
in 2D spectroscopy.38 The linearly polarized pulses here are
taken to have the “envelope delayed form” generated by an
interferometer pathlength difference

wheree(t) is the temporal envelope (e.g. a Gaussiane(t) ) e0

exp(-2 ln[2]t2/tp2) with intensity full width at half-maximum
tp), φ(t) is the temporal phase (e.g.φ(t) ) ω0t), andtR ) ∆lR/c
is the delay generated by the path difference∆lR. The third-
order nonlinear polarization with wave-vectorks can be obtained
by a triple convolution of the phase-matched part of the impulse
response function with the incident electric fields.

The center of pulse c definest ) 0. The phase-matched part of
the third-order response functionS(3)(ks,τa,τb,τc) is equal to the
polarization with wave vectorks ) ∑sRkR (wheresR ) (1 and
R ) a, b, c) created by three delta function excitation pulses
with wave vectorska, kb, andkc at the timesτa, τb, andτc before
the present. Since the time domain electric fields and nonlinear
polarization are real-valued functions,S(3)(ks,τa,τb,τc) is real. By
causality,S(3) ) 0 if any τR < 0. The vector nature of the fields
and tensorial character ofS(3) are ignored.42 The frequency
domain fields and polarization are defined by the inverse Fourier
transform

and are inherently complex-valued functions over the entire real
axis-∞ < ωt < ∞. Since two frequencies are used, frequencies
are given a subscript denoting the conjugate Fourier transform
time variable. BecauseE(t) is real

Phase shifts are defined as constant spectral phase shifts in the
frequency domain, which multiplyÊR(ωR) by exp[iφR sign(ω)].38

A triple inverse Fourier transformation of eq 2 with respect to
ta (-ωa), tb (ωb), andt (ωt ) ωc + ωb - ωa) yields the complex
polarization in the frequency domain.38 The frequency variables
used in the transformations with respect tota, tb, andt are chosen
so the sign of the excitation frequencyωR in the signal frequency
ωs ) ∑sRωR matches the sign of the corresponding wave vector.

Ŝ(3) is the inverse Fourier transform of the third-order response
functionS(3) with respect toτa, τb, andτc. ÊR(ωR) is the inverse
Fourier transform ofER(t) at zero delay (tR ) 0). The frequency
variables used forta, tb, and t dictate the conjugate Fourier
transform frequencies forτa(-ωa), τb(ωb), and τc(ωc) in this
transform. According to eq 5, constant spectral phase shiftsφR

ER(t) ) e(t - tR) cos[φ(t - tR)] (1)

P(3)(ks,t,ta,tb) ) ∫0

∞ ∫0

∞ ∫0

∞
S(3)(ks,τa,τb,τc)Ea(t - τa) ×

Eb(t - τb)Ec(t - τc) dτa dτb dτc (2)

Ê(ωt) ) ∫-∞

∞
E(t) exp(iωtt) dt (3)

Ê(ωt)* ) Ê(-ωt) (4)

P̂(3)(ks, (ωc + ωb - ωa),-ωa, ωb)

) Ŝ(3)(ks,-ωa,ωb,ωc)Êa(-ωa)Êb(ωb)Êc(ωc) (5)
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of the excitation pulses produce a constant spectral phase shift
φs ) ∑sRφR of the source polarization.38,43The three-dimensional
result in eq 5 also suggests that the effect of finite duration
pulses on a 2D spectrum is simply one of spectral filtering (and
possibly phase distortion via chirp).1 Numerical investigations
of this suggestion are presented in this paper. Since
S(3)(ks,τa,τb,τc) is real, the real and imaginary parts of the
frequency domain third-order phase-matched susceptibility
obey44

The real (dispersive or reactive) part of the frequency domain
phase-matched nonlinear susceptibility yields no net change in
material energy, while the imaginary (absorptive or dissipative)
part mediates energy exchange between material and the
electromagnetic field.43,44

In calculations which invoke the rotating wave approximation,
it is convenient to use complex electric fields, a complex third-
order response function, and a complex third-order polariza-
tion.36 The complex field associated with the real field in eq 1
is defined by

so thatE(t) ) Ê(t) + Ê*( t). The complex envelopeê(t - tR) )
e(t - tR) exp[i(φ(t - tR) - ω0(t - tR))] is a useful way to
incorporate chirp and phase shifts. The complex field is
independent of the reference frequencyω0. Within the rotating
wave approximation, the third-order polarization is given by

where Ŝrw
(3) is the rotating wave approximation to the phase-

matched response function.ta and tb are the experimentally
controlled pulse delays relative to the center of pulsec at t )
0. Writing the response function in terms of the pulse-labeled
interaction timesτa, τb, andτc instead of the ordered timest1,
t2, andt3 simplifies the form of eq 8.43

The third-order response functionŜrw
(3) (ksa, τa, τb, τc) can be

calculated by third-order perturbation theory. Density matrix
perturbation theory is convenient because each term in the
perturbation series has a definite wave vector, so that only terms
which contribute to a macroscopically near phase matched
polarization for the detected signal direction need be re-
tained.36,45For a two-electronic-state system, each surviving term
in the perturbation series for emission in directionkc + kb - ka

is represented by one of the eight double-sided Feynman
diagrams D1-D8 shown in Figure 2 (or by a conjugate diagram
terminating in the matrix elementFge instead ofFegwhich makes
a complex conjugate contribution to the signal). Rules for
correspondence between terms in the perturbation series46 and
diagrams can be found in the books by Shen45 and Mukamel.36

Figure 2 shows double-sided Feynman diagrams representing
terms in the density matrix perturbation theory expansion of
the nonlinear response for a two-electronic-state system in which
excited state sublevels are labeled e or e′ and ground state
sublevels are labeled g or g′. The excitation pulse interactions
are represented by arrows intersecting the vertical lines on each
side of the diagram. The density matrix element change probed

between interactions is indicated by the labelsmn, (m,n ) g,
g′, e, e′) wheremn represents the density matrix elementFmn.
For finite duration pulses, the positive time intervalst1, t2, and
t3 can range aroundt1 ) |τ|, t2 ) T, andt3 ) t, as indicated by
the triple convolution in eq 8. Diagrams D5-D8 have an
improper time ordering and do not contribute to the signal unless
pulse c overlapsa or b. During the evolution timeτ, the
electronic dipoles are oscillating at frequencies (such asωge in
diagram D2) which appear on theωτ axis. During the mixing
time T, the experiment allows density matrix changes (Fee′ or
Fgg′) to evolve on the ground or excited electronic state. A
weakness of these diagrams for 2D relaxation spectroscopy is
that they do not show population or coherence transfer during
this time interval (although this can be included in the response
functions). The detection timet probes coherent dipole radiation,
and Fourier transformation of the radiated field with respect to
t yields theωt axis.

Detecting the signal in a particular direction selects the
relatiVe sign of electronic frequencies observed duringτ andt.
When the relative sign is negative (N-type coherence pathway),
equal and opposite frequency evolution duringτ and t will
rephase an ensemble of dipoles which oscillate at different
frequencies att ) τ, producing a “photon echo”.47 Diagrams
D2, D3, D6, and D7 have N-type coherence pathways2 and
contribute to macroscopic dipole rephasing. When the relative
sign is positive (P-type coherence pathways2 in diagrams D1,
D4, D5, and D8), macroscopic rephasing of an inhomogeneous
ensemble is not detected.

Ŝ(3)(ks,-ωa,ωb,ωc)* ) Ŝ(3)(ks,ωa,-ωb,-ωc) (6)

Ê(t) ) (1/2)ê(t - tR) exp[iω0(t - tR)] (7)

P(3)(ksa,t,ta,tb) ) ∫0

∞ ∫0

∞ ∫0

∞
Ŝrw

(3)(ksa, τa, τb, τc) ×
êa
/(t - ta - τa)êb(t - tb - τb)êc(t - τc) ×

exp[iωa(t - ta - τa)] exp[-iωb(t - tb - τb)] ×
exp[-iωc(t - τc)] dτa dτb dτc + complex conjugate (8)

Figure 2. Eight double-sided Feynman diagrams for a two electronic
state system which survive the rotating wave approximation and yield
a third order polarization with wavevector (-ka + kb + kc). Time
increases vertically from bottom to top andt1, t2, andt3 label positive
time intervals between field-matter interactions. Incoming diagonal
arrows (head touching diagram bar) represent absorption amplitude,
while outgoing diagonal arrows (head pointing away from bar) represent
emission amplitude. The vertical bars represent the ket (left bar) and
bra (right bar) indices of the density matrix element, which changes at
each interaction time (horizontal tiebars). The letters in the center of
each diagram represent the element of the density matrix probed during
that time interval. The time ranges forτ andT at the top indicate when
the two diagrams below contribute to the signal for delta-function
pulses. Finite duration pulses allow the zeroes in these ranges to be
replaced by either(tp, wheretp is the pulse duration. The labels at the
bottom of each pair indicate whether density matrix element frequencies
during t1 andt3 are approximately opposite in sign (N-type coherence
paths or rephasing diagrams) or approximately equal (P-type coherence
paths or nonrephasing diagrams).
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Ŝrw
(3) is given by a pair of functionsRi which depend on the

ordering of τa, τb, and τc and is determined by the pair of
applicable double-sided Feynman diagrams in Figure 2. Within
the rotating wave approximation, expressions for theRi have
been obtained for several relaxation models by Mukamel and
co-workers.36,48 The key quantities in these treatments are the
transition frequency correlation functionM(t), the reorganization
energyλ, the coupling strength∆, and the line-shape function
g(t). The model calculations presented here are based either on
a two-level Bloch model or the Brownian oscillator model of
Yan and Mukamel.49 The Brownian oscillator response functions
Ri obtained by Yan and Mukamel in terms of the lineshape
functiong(t) (eq 8.15 of ref 36) are valid in the high-temperature
limit pω < kTwhereω is the oscillator frequency.50,51A number
of finite pulse duration calculations of femtosecond three pulse
scattering signals using these response functions have been
published.35,52,53Equation 8 differs from these earlier calcula-
tions only by using envelope pulse delays instead of carrier wave
delays. This difference affects the phase of the signal (hence
the 2D spectrum calculated here) but not the intensities measured
in the earlier studies.

A systematic analysis of the molecular factors which deter-
mine the phase of the nonlinear polarization and radiated signal
field in the weak excitation limit is given elsewhere,43 but the
results will be briefly summarized here. It was found that the
phase of the signal field is determined by the excitation pulse
phases, the time scale of the nonlinear polarization decay, the
product of four transition dipole matrix elements, and a pulse
delay dependent phase modulation at the frequency of the first
dipole oscillation in the four-wave mixing process. Even with
perfect phase matching, the emitted fieldEsig(t) can have some
rather complicated dynamics (temporal phase shifts, chirp,
envelope distortions) created through the spontaneous radiation
by the nonlinear polarization. A Fourier decomposition43 of the
differential equation connecting the nonlinear polarization to
the emitted field36,45,54shows that

for the perfectly phase-matched case. In eq 9,l is the sample
length,n is the refractive index, andc is the speed of light. The
product F̂(ωt,τ,T) ≡ i sign(ωt) P̂(3)(ωt,τ,T) can be easily
recovered from experimental data asÊsig(ω)n(ω)/|ω| and
removes the complex radiation dynamics from the 2D spectra
while retaining its symmetry with respect toωt.43 Since the
spontaneous radiation dynamics are not present in the indirectly
detected dimension, this procedure treats both frequency axes
in a symmetrical way, preserving the symmetry of a homoge-
neously broadened 2D line shape. The 2D spectrum is defined
by inverse Fourier transformation ofF̂(ωt, τ, T) with respect to
τ:

UsingF̂(ωt, τ, T) ≡ F̂(-ωt, τ, T)*, it is straightforward to show
S2D(ωt,ωτ,T) ) S2D(-ωt,-ωτ,T)* so that knowledge ofS2D on
half of the (ωt, ωτ) plane is sufficient to characterize the 2D
spectrum. For delta function pulses, the real and imaginary parts
of 2D electronic spectra obey a Kramers-Kronig relationship
with respect toωt. Since Kramers-Kronig relates real and
imaginary parts over the entire frequency axis, this relationship
does not generally hold for finite bandwidth pulses. This
Kramers-Kronig relationship arises because the signal is causal

with respect tot (no signal beforet ) 0 for delta function
pulses). Unlike 2D NMR,2 there is no Kramers-Kronig
relationship forωτ. The viewpoint that the Fourier transform
with respect toτ separates the frequency domain signal field
according to the initial frequency which caused it suggests that
the integral of the 2D signal overωτ should equal theτ ) 0
frequency domain signal field. Theφ ) 0 case of the projection-
slice55 or projection-cross-section56 theorem confirms this
conjecture, providing a useful connection between 2D spectra
and the transient grating field (τ ) 0 three pulse scattering signal
field)

This result says the integral of the 2D spectrum overωτ
(projection of the 2D spectrum onto theωt axis) is equal to the
Fourier transform of the time domain transient grating field (τ
) 0 data slice) at the same value ofT. In a spectrally resolved
pump-probe experiment, the signal is the change in transmitted
probe spectrum induced by a noncollinear pump.19-21 For
identical transform limited excitation pulses, the real part of
the transient grating fieldÊTG(ωt) is closely related to the
spectrally resolved pump-probe signal∆Ipp

Since t ) 0 is defined by the center of pulsec in a transient
grating experiment and by the center of the probe pulse in a
pump-probe experiment, a transform-limited probe pulse has
a real frequency domain fieldÊpr(ω) (up to a constant phase
which also appears inÊTG (ω) and therefore cancels). When
multiplied by the probe spectral filter, the real part of the 2D
projection is equal to the spectrally resolved pump-probe signal

Since the spectrally resolved pump-probe signal is unaffected
by constant phase shifts of either the pump or probe, this
relationship should be useful in phasing experimental 2D spectra
to correct for interferometer imperfections.

To avoid mixing absorption and dispersion mode 2D spectra,
it is necessary to superpose equally weighted signals with equal
and opposite “orders of coherence” during the dipole evolution
period.2 The Fourier transform procedure must also be chosen
to match the experiment in order to avoid inadvertent Kramers-
Kronig transformation between absorption and dispersion mode
spectra. For example, a truncated [0,∞) Fourier transform of
the symmetric double-sided interferogram generated by a Fourier
transform absorption spectrometer57 places the Kramers-Kronig
transform of the transmitted pulse spectrum into the imaginary
frequency spectrum.38 Hybl et al.1 scanned continuously across
τ ) 0 at fixedT, and used complex Fourier transformation over
the range-∞ < τ < ∞. A nonlinear optical definition for order
of coherence is proposed here in order to examine this procedure
in more detail.

In magnetic resonance, the order of coherencep during each
time interval between field-matter interactions is defined byp
) ∆M, where∆M is the difference in magnetic quantum number
M between states in the coherent superposition.2 Because of
the ∆M ) (1 dipole selection rule for circularly polarized
radiation,∆M is uniquely determined by the difference between
the number of right and left circularly polarized photons required
to conserve angular momentum in a transition. There is no
molecular quantity analogous to∆M for electronic excitation
with linearly polarized light. In magnetic resonance, the order

Êsig (ωt) ) l
n(ωt)c

iωtP̂
(3)(ωt) (9)

S2D(ωt,ωτ,T) ≡ ∫-∞

∞
F̂(ωt,τ,T) exp(iωττ) dτ (10)

∫-∞

∞
S2D(ωt,ωτ,T) dωτ ) i sign(ωt) P̂(3)(ωt,τ)0,T) (11)

∆Ipp(ωt) ∝ ÊTG(ωt)* Êpr(ωt) + ÊTG(ωt) Êpr(ωt)* (12)

∆Ipp(ωt) ) Re[Êpr(ωt) ∫-∞

∞
S2D(ωt,ωτ,T) dωτ] (13)
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of coherence is operationally selected for by a process called
phase cycling: if all the pulses used to prepare a coherent
superposition are phase shifted byφ, then the signal will be
phase shifted bypφ.58 Provided the spectrum of the pulses does
not extend to zero frequency so that phase shifts can be defined
as constant changes in the spectral phase,38 this operational
definition of the order of coherence can be extended to nonlinear
optics. In time-resolved nonlinear optics, it is well-known that
the pulse ordering and macroscopic phase-matching direction
for noncollinear beams can be used to selectively probe a
reduced set of density matrix elements during each interval
between pulses.36,45It is shown here that the set of density matrix
elements probed during each time interval has a single opera-
tionally defined order of coherence for fully noncollinear pulses.
If a sample is excited by noncollinear pulses with wave vectors
ki and a perfectly phase matched nonlinear signal is detected
with wave vectorks ) ∑siki where si ) (1, then constant
spectral phase shiftsφi of the excitation pulses yield a phase
shift of the signal given byφs ) ∑siφi.33,38 This implies that
the operational order of coherence58 after thejth excitation pulse
in a nonlinear optical experiment is given by

If all the excitation pulses are noncollinear and temporally
nonoverlapping, the order of coherence during each interval
between pulses is uniquely determined by the phase matching
direction and the time ordering of the pulses. Unlike∆M, the
operational order of coherence in nonlinear optics is not an
obviously conserved quantity between pulses. Linearity of the
Liouville equation36,59suggests the operational order of coher-
ence is conserved in the sense that the spatial dependence
exp[i∑isiki‚r] of density matrix elements is preserved. Relaxation
models which retain linearity for subsystems59,60will conserve
the operational order of coherence between pulses.

Examining the double-sided diagrams in Figure 2 shows that
in the four-wave mixing experiments treated here, the order of
coherence during the evolution period after the first interaction
can be eitherp1 ) -1 if pulse a interacts first (diagrams D2,
D3, D6, and D7) or p1 ) +1 if pulse b (diagrams D1 and D4) or
c (D5 and D8) interacts first; after the second interaction,p2 )
0 during the mixing period; andp3 ) +1 during the detection
period after the third interaction. (Only the relative signs ofpj

during different time intervals are significant as a change of all
signs corresponds to complex conjugation.) This establishes that
the coherence transfer pathways2 in EASY 2D electronic
spectroscopy are identical to those in the simplest implementa-
tions of NOESY 2D NMR (nonzeroT) and COSY 2D NMR
(for T ) 0). The problem of equally weighting the opposite
orders of coherencep1 ) +1 andp1 ) -1 during the evolution
period will now be addressed. Hybl et al.1 scanned continuously
acrossτ ) 0 and used complex Fourier transformation over
the range (-∞, ∞) for both t and τ. N-type coherence paths2

with p1 ) -1, p2 ) 0, p3 ) +1 can produce macroscopic dipole
rephasing and a real photon echo signal.61 P-type coherence
paths withp1 ) +1, p2 ) 0, p3 ) +1 cannot rephase (these
signals are called virtual photon echoes61 or “antiecho” in
NMR2). The procedure adopted by Hybl et al.1 effectively
superposes P-type signals (which dominate for negativeτ) and
N-type signals (which dominate for positiveτ) with the inverse
Fourier transformation over allτ.

For T greater than the pulse duration, only properly time
ordered double-sided Feynman diagrams D1-D4 contribute to

the signal, and the rephasing (N type) diagrams which contribute
for positiveτ are balanced by nonrephasing (P type) diagrams
which contribute for negativeτ. Equal and opposite orders of
coherence are equally weighted so that scanning acrossτ ) 0
produces real 2D absorption and imaginary 2D dispersion peak
shapes. The improperly time ordered diagrams contribute to the
signal ifT is less than the pulse duration. The improperly ordered
diagrams may be unbalanced: the nonrephasing (P type)
diagrams D5 and D8 contribute only when all three pulses
overlap while the rephasing (N type) diagrams D6 and D7 can
also contribute for nonoverlapping positiveτ less than the
dephasing time. ForT less than the pulse duration, the procedure
of scanning acrossτ ) 0 does not equally weight opposite orders
of coherence. A partially “phase twisted” peak shape2 which
mixes absorption and dispersion lineshapes in the 2D spectrum
can result from this imbalance in a two-level system. This
problem increases in importance for shorter pulses, which
preferentially reduce the contribution from the nonrephasing
improperly time ordered diagrams. However, for sufficiently
short pulses, settingT greater than the pulse duration could
eliminate this imbalance without missing any dynamics.

There is also a more subtle source of possible N/P imbalance.
When each electronic state contains two sublevels, every double-
sided Feynman diagram yields eight distinct energy ladder
subdiagrams for each level of the ground state. Figure 3 shows
the eight subdiagrams which start in the upper sublevel of the
ground state for the properly ordered excited state double-sided
diagrams D1 (nonrephasing) and D2 (rephasing). In energy ladder
diagrams, arrows on the right side of the double-sided diagrams
are solid, while arrows on the left side of the double-sided
diagrams are dashed. Time runs from left to right, and the signal
radiation is shown as a wavy line. The rules for these diagrams
have been summarized by Lee and Albrecht.62

When the eight rephasing subdiagrams are compared to the
corresponding eight nonrephasing subdiagrams, the first four
subdiagrams in each set exhibit a rephasing/non-rephasing
balance. In general, the first two subdiagrams represent a
reduction in absorption (in 1d1 and 1d2, excited state population
leads to stimulated emission and a transmission increase at the
initial excitation frequency). The next two subdiagrams represent
double resonances (in 1d3 and 1d4, excited state population leads
to stimulated emission at a different frequency). The ground
state versions of these four subdiagrams involve ground state
depopulation reducing the absorption on every transition out
of the depopulated level. In optics, subdiagrams d3 and d4 are
known as “V” (common ground state) or “Λ” (common excited
state) double resonances based on the energy level diagram.63

In NMR, subdiagrams d3 and d4 correspond to “regressive
transitions” which yield pure 2D absorption peakshapes in
weakly coupled spin systems.2

In contrast, the four subdiagrams which involve coherent
sublevel excitation (d5-d8) may be imbalanced. Two of the four
subdiagrams (d7 and d8) which involve coherent sublevel
excitation have transition dipole products of the typeµabµbcµcdµda,
which must be real but may be either positive or negative.43

The other six subdiagrams (d1-d6) have transition dipole
products of the real and positive form|µab|2|µbc|2. The two
subdiagrams which can have negative transition dipole products
(d7 and d8) correspond to “parallel transitions” which yield 2D
peaks of either sign64,65with mixed absorption/dispersion peak
shapes in strongly coupled spin systems.2 The radiation produced
by these parallel transitions can lie outside the spectrum of the
excitation pulses. Since four different frequencies are involved,
these parallel four-wave mixing transitions may not appear in

pj ) ∑
i)1

j

si (14)
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non-FT 2D spectra assembled by combining pump-probe
signals.12 The division of the eight energy ladder subdiagrams
into four balanced double resonance diagrams plus 4 imbalanced
coherent sublevel excitation diagrams and the division into six
positive signal diagrams plus two possibly negative subdiagrams
discussed above both hold generally in the absence of relaxation.
It seems likely that some relaxation processes (e.g. generation
of coherent vibrational wavepackets by rapid internal conver-
sion17) can produce negative signals not considered above. The
rephasing/nonrephasing imbalance produced by these coherent
processes in a multilevel system might yield phase-twisted 2D
peaks even when the improperly ordered diagrams cannot
contribute to the signal. Such phase twisted peaks will not occur
after sublevel coherences decay (i.e. whenT greatly exceeds
the vibrationalT2).

III. Calculations

In eq 8, settingω0 ) ωa ) ωb ) ωc and pulling theta andtb
delay dependent field oscillations outside the integral along with
the t dependent oscillation yields

whereτ ≡ tb - ta. The reference frequencyω0 in the complex
field can be chosen to match the electronic Bohr frequencyωeg

so thatτR dependent oscillations inŜrw
(3) are cancelled by the

exponential adjacent to it in eq 15. Provided the reference
frequency is not too different from the pulse center frequency,
one obtains the sort of slowly oscillating complex integral
expected from the rotating wave approximation.

The sum of the explicitly written integral and its complex
conjugate in eq 15 is rapidly oscillating in botht andτ, which
would require a high Nyquist sampling rate (two points per cycle
of the highest frequency)66 for the double Fourier transformation.
A much lower sampling rate (one point per cycle of the spectral
bandwidth) can be used to Fourier transform only the explicitly
written triple integral in eq 15, which yields a 2D spectrum
centered atωt ) ωeg - ω0, ωτ ) -(ωeg - ω0). After Fourier
transformation of the slowly varying triple integral, the rapidly
oscillating exp[iω0(t - τ)] term is included using the Fourier
shift theorem66 by addition and subtraction ofω0 from ωt and
ωτ, respectively. This recenters the 2D spectrum atωt ) ωeg,
ωτ ) -ωeg. The contribution of the complex conjugate term in
eq 15 to the 2D spectrum is obtained by inverting both frequency
axes. This procedure saved an order of magnitude in computing
time by reducing the number of triple integrals required to do
the 2D Fourier transform. This undersampling of a phase-
modulated signal does not overlap different 2D peaks, so phase
cycles3 are not required to separate them. Undersamplingτ
without phase cycling should also be possible in the EASY 2D
experiment.

In numerical calculations, the interaction timesτR in the triple
integrals ranged over (t - ta) ( 2.5tp, wheretp is the Gaussian
pulse duration. The three integrals overτR were computed using
the Numerical Recipes Gauss-Legendre quadrature routine
gauleg.f.67 Six quadrature points for each nearly Gaussian
integral typically sufficed for convergence (this rapid quadrature
algorithm was generously provided by Dr. Jae-Young Yu). A
series of time domain calculations of third-order nonlinear
optical signals used to check the code are described else-
where.43,68The Fourier transform variablet ranged from-2.5tp
to tmax; τ ranged from-τmax to τmax.

As a check on the 2D Fourier transformation, optical Bloch
model 2D spectra were calculated using pulse durations of 0.1
fs, and step sizes of 1 fs in botht andτ for comparison to the
analytical expression for this signal in the impulsive limit. Since
NMR signals are often described in this limit, there is a vast
literature describing the resulting line shapes.2,3 For t g 0, the
third-order polarization of a two-level system in the optical
Bloch limit is given by

whereωeg is the electronic transition frequency,Γ is the dipole
decay rate (1/T2), andT1 is the population grating lifetime. There

Figure 3. Energy ladder subdiagrams for double-sided Feynman
diagrams D1 (above) and D2 (below). Only the eight subdiagrams
starting from the upper sublevel of the ground electronic state are shown.
D1 and D2 are the properly ordered diagrams which evolve on the
excited state during the population period (see Figure 2). D1 is
nonrephasing (P-type coherence) and contributes primarily for negative
τ while D2 is rephasing (N-type coherence) and contributes primarily
for positiveτ. For both D1 and D2, subdiagrams d1-d4 show excited
state emission inΛ type double resonances. The two sets of subdiagrams
d1-d4 are in exact correspondence with respect to the initial frequency,
density matrix element probed during the time intervalt2, and density
matrix element probed duringt3 (hence radiated frequency). The only
difference is the type of coherence (N for D2 vs P for D1) probed during
t1, so that subdiagrams d1-d4 are in rephasing/nonrephasing balance
and will yield real 2D absorption line shapes for allT. In contrast, the
two sets of subdiagrams d5-d8 which involve coherent superposition
states after the second interaction cannot even be paired so the initial
and final frequencies match. The two sets of subdiagrams d5-d8 have
a dephasing/rephasing imbalance and may produce “phase-twisted” line
shapes. In both sets of subdiagrams d1-d6, every transition dipole
appears also in complex conjugate form so that the product of four
transition dipole moments is real and positive. Subdiagrams d7 and d8
involve four different transition dipole moments and their product can
be either a positive or negative real number. If the transition dipole
product is negative, these subdiagrams can contribute negative intensity
peaks to the 2D spectrum.

P(3)(ksa,t,ta,tb) ) exp[iω0(t-τ)] ×
∫0

∞ ∫0

∞ ∫0

∞
Ŝrw

(3)(ksa,τa,τb,τc) exp[iω0 (-τa + τb + τc)] ×
êa
/(t-ta-τa)êb(t-tb-τb)êc(t-τc) dτa dτb dτc +

complex conjugate (15)

P(3)(t,τ,T) ) exp[- Γ(t+|τ|)] exp[-T/T1] ×
sin[ωeg(t - τ)][1 + δ(T)θ(τ)] (16)
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is no phase-matched third-order polarization before pulsec hits
the sample att ) 0. P(3) then oscillates, with the oscillation
decaying exponentially int. Dipole decay before the arrival of
the second pulse causes an exponential decay ofP(3) with the
delay|τ|. Dipole oscillation duringτ modulates the initial phase
of the oscillating third-order polarization. ForT ) 0, there is a
discontinuity in the nonlinear polarization atτ ) 0 where it
instantly increases by a factor of 2 for positiveτ (hence the
δ(T) θ(τ) term whereθ(τ) is the Heaviside unit step function
andδ(0) ) 1 but is otherwise zero). This jump was not included
in eq 1 of ref 1 which is valid only forT > 0.

The impulsive 2D electronic spectrum in the Bloch limit is
given by

where

are one-dimensional Lorentzian absorptive and dispersive line-
shape functions.2 The 2D spectrum is nonzero only in two
symmetry related quadrants. The calculatedT ) 0 2D spectrum
in Figure 4a demonstrates a partial “phase twist”2,3 caused by
the imbalance between rephasing and nonrephasing contributions
to the 2D spectrum in theδ(T)θ(τ) term. Theδ(T) term in the
spectrum is known as a phase-twisted line shape in 2D NMR.2,3

Once T exceeds the pulse duration atT ) 2 fs, this partial
twisting is gone (Figure 4b) and the 2D spectrum does not
change shape withT. For T > 0, the 2D Bloch spectrum has
real and imaginary parts with Lorentzian absorptive and
dispersive line shapes. The real part of the 2D spectrum is a
product of two absorption line shapes with a characteristic star
shape1-3 while the imaginary part is the product of an absorption
lineshape inωτ and a dispersion line shape inωt with a nodal
line atωt ) ωeg.1 The real absorptive and imaginary dispersive
line shapes inωt result from scattering off an electronic state
population grating which creates both absorption coefficient and
refractive index gratings.37

Since 2D spectra are additive, an inhomogeneous distribution
p(ωeg) of Bohr transition frequencies,ωeg, will elongate the
spectrum in eq 17 by convolution withp((ωt - ωτ)/x2)δ((ωt

+ ωτ)/x2) to produce a positive ridge along the diagonal.1

This is the 2D spectrum for an inhomogeneous ensemble of
two-level systems with Lorentzian line shapes due to a static
distribution of local chromophore environments (e.g. low-
temperature glasses). The Bloch model cannot account for the
time-dependent local environment in solution very well, because
the dynamics cannot be cleanly split into infinitely fast
(homogeneous) and infinitely slow (inhomogeneous) processes.
In condensed phases, the response function should include
spectral diffusion and the Stokes’ shift. The Brownian oscillator
response functions of Yan and Mukamel36,49produce 2D spectra
that are clearly inhomogeneously broadened nearT ) 0 (before

different local environments can interconvert) and gradually
become homogeneously broadened with increasingT as local
environments lose memory of their initial configuration. Vi-
brational sublevel relaxation not shown in the diagrams is
included semiclassically. The Brownian oscillator model in-
cludes both spectral diffusion and the Stokes’ shift, explicitly
forces all electronic dephasing processes to arise from nuclear
motion on finite time scales, and treats the difference between
homogeneous and inhomogeneous broadening as simply a
matter of time scale rather than a difference in mechanism.36

IV. Results

A goal of these simulations is to understand how different
processes in the electronic dynamics of molecules in solution
are manifested in 2D spectra. There is no clear dividing line
between the solute and a strongly interacting solvent. Distinction
between intramolecular and solvent motions is not possible
without comparisons between related solute/solvent systems.
Molecules in solution usually have some underdamped vibra-
tions present in all solvents, some coupling to motions seen in
spectra of the neat solvent, and some damped vibrations of less
certain origin.69 Of particular interest is inertial solvation,15,70

the earliest step in polar solvation when the solvent takes time
to react to the new solute charge distribution. Here the electronic
frequency correlation functionM(t) is expected to decay initially
as 1 - ât2 which is often extended as a Gaussian.70 Even
experiments using short pulses (10-20 fs) have not been able
to characterize the short-time behavior of the frequency cor-
relation functionM(t) in some solvents, and there has been

S2D(ωt,ωτ,T) ) a(-ωτ)a(ωt) - ia(-ωτ)d(ωt) +
(1/2)δ(T)[a(-ωτ)a(ωt) + d(-ωτ)d(ωt) -

ia(-ωτ)d(ωt) + id(-ωτ)a(ωt)] +
a(ωτ)a(-ωt) + ia(ωτ)d(-ωt) +

(1/2)δ(T) [a(ωτ)a(-ωt) + d(ωτ)d(-ωt) +
ia(ωτ)d(-ωt) - id(ωτ)a(-ωt)] (17)

a(ω) ) Γ
(ωeg - ω)2 + Γ2

d(ω) )
(ωeg - ω)

(ωeg - ω)2 + Γ2
(18)

Figure 4. Impulsive two-dimensional spectra for the Bloch model with
Γ ) 300 cm-1. The 2D spectra on the left (a) were calculated forT )
0, and the 2D spectra on the right (b) forT ) 2 fs. The upper plots
show the real (absorptive) part of the 2D spectrum and the lower plots
show the imaginary (dispersive) part of the 2D spectrum. The vertical
axisωτ is the indirectly detected frequency of dipole oscillation during
the evolution period. The horizontal axisωt is the directly detected
frequency of the emitted signal field during the detection period.
Contour intervals are 10% of the real maximum. Dotted contours are
negative. The spectra on the top and right axes are the integral of the
signal over the other axis. On the left, the overlap between pulse c and
a or b during aT ) 0 scan gives rise to a partially “phase-twisted” 2D
spectrum because of a rephasing/nonrephasing coherence imbalance
(see text). All Bloch model 2D spectra are identical to that on the right
once pulse c no longer overlaps either a or b during the scan. ForT >
0, the absorptive (real) spectrum is a two-dimensional Lorentzian
a(-ωτ)a(ωt) and the dispersive (imaginary) spectrum is the product of
Lorentzian absorption and dispersion line shapesa(-ωτ)d(ωt).
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disagreement over whether there is evidence for inertial solvation
in photon echo measurements on dyes in solution.35,71,72 It is
useful to calculate 2D spectra for the limiting cases of the
Brownian oscillator and several other functions commonly used
in approximating the transition frequency correlation function
M(t) in order to understand their effect on the overall measured
signal. Representative 2D spectra for the various parts ofM(t)
listed in Table 1 were calculated and analyzed to gain insight
into their respective roles in solvation processes. Since finite
bandwidth pulses simply acted as a spectral filter, 2D spectra
were calculated with impulsive pulses to view the widest
bandwidth in the frequency spectra unless otherwise noted.
These impulsive 2D spectra obey a Kramers-Kronig relation
with respect toωt, which was used as an additional check on
the calculations.

IVA. Underdamped Oscillator. Perhaps the most illuminat-
ing case in Table 1 for understanding 2D electronic spectros-
copy, if not the most relevant to solvation dynamics, is the
underdamped Brownian oscillator. The damped cosinusoid
shows essentially the same behavior, so this discussion will be
limited to the underdamped oscillator. An underdamped oscil-
lator repeatedly oscillates before relaxing to a thermal equilib-
rium coordinate distribution near the bottom of the excited state
potential energy surface, completing its Stokes’ shift. For a
Brownian oscillator, all vibrational phase relaxation is caused
by vibrational energy loss. Figure 5 shows mixing timeT ) 0
real and imaginary spectra for two differently displaced oscil-
lators with frequencyω ) 400 cm-1 at a temperature of 800

K. The oscillator vibrational motion has a period of 83 fs and
an exponential damping time of 1060 fs. Because of the repeated
oscillation, discrete peaks can be seen in the 2D spectrum. The
repeated oscillations of the underdamped oscillator were cal-
culated on 150 unevenly spaced Gaussian quadrature points in
t; cubic splines were used to interpolate onto a 512-point evenly
spaced grid for the FFT. This Fourier-transformed signal was
calculated at 256 values ofτ and the resulting array was
transformed with respect toτ. The spectra in Figure 5a (left)
have dimensionless displacement of the excited state minimum
from the ground state minimum,d ) x3. (d ) x2λ/ω, where
λ is the reorganization energy andω is the oscillator frequency.)
Figure 5b (right) shows a spectrum withd ) 3. In the real
spectra (top row) the one-dimensional spectra lining either axis
are the result of integrating the signal over the other axis
(projected spectra). ForT > tp, the 2D projection ontoωτ
resemblesa filtered absorption spectrum in the calculations
performed so far. Outside the models used for calculation, such
a relationship depends on the relaxation dynamics of the system
(e.g. breakdown occurs for internal conversion rates which
depend on the vibrational energy). For delta function pulses,
the projection of the 2D spectrum ontoωt is equal to the
spectrally resolved pump-probe signal (see eq 13).

The same2D correlation spectrum is observed when the
calculation is restricted to include only excited state response
functions or only ground state response functions. The negative
region persists for nonzero mixing timeT, but is not present
for nonzeroT in an inhomogeneously broadened two-level Bloch
model. The negative region of the projection and the negative
peaks in the 2D spectrum that lead to it are evidently related to
coherent wavepacket excitation on either the ground or excited
electronic states during the second and third pulses. Off-diagonal
energy level subdiagrams like 1d8 and 2d8 in Figure 3 can
produce negative intensity peaks in a 2D spectrum if they have
a negative transition dipole product. Analysis of a four-level
system suggests these negative subdiagrams tend to yield
stronger 2D peaks forωt < ωτ when lower energy sublevels of
the ground electronic state are preferentially populated. The
proportion of possibly negative intensity subdiagrams increases
with the number of sublevels.

The negative regions of the ground state 2D spectrum may
be related to stimulated Raman excitation of wavepackets on
the ground state. A similar effect has been predicted for pump-
probe transients, where the enhanced vibrational amplitude
produces increased ground state absorption in the wings of the
steady-state absorption, although the negative signals are masked
except at low temperature.73 Although a singleδ-function pulse
cannot excite ground state wavepackets within the Condon
approximation used in the Brownian oscillator model, aδ-func-
tion pulse pair can cause stimulated Raman scattering because
there is time for wavepacket evolution on the excited state
between pulses.74 The excited state subdiagrams d7 and d8
exhibit similar access to possibly unpopulated ground state
sublevels. A single “absorption frequency” and “emission
frequency” are inadequate to fully describe the 2D spectra when

TABLE 1: Bohr Frequency Correlation Functions

M(t) equation use

overdamped Brownian oscillatora M(t) ) (s+/(s+ - s-)) exp(-s-t) - (s-/(s+ - s-)) exp(-s+t) inertial solvation
critically damped Brownian oscillator M(t) ) exp(-γt/2)[1 + γt/2] inertial solvation
Gaussian M(t) ) A exp(-t2/τg

2) inertial solvation
decaying exponential M(t) ) A exp(-t/τc) picosecond solvation dynamics
underdamped Brownian oscillatorb M(t) ) exp(-γt/2)[cos(ω′t) + (γ/2ω′) sin(ω′t)] intramolecular vibrations
damped cosinusoid M(t) ) A exp(-t/τc) cos(ωt + φ) intramolecular vibrations

a Overdamped oscillator exponential coefficientss( ) γ/2 ( [(γ/2)2 - ω2]1/2. b Underdamped oscillator reduced frequencyω′ ) [ω2 - (γ/2)2]1/2.

Figure 5. Real and imaginary 2D correlation spectra at zero mixing
time (T ) 0) for underdamped Brownian oscillators with a vibrational
frequencyω ) 400 cm-1 at a temperature of 800 K. (a, left)d ) x3,
ωeg ) 8000 cm-1, γ ) 10 cm-1. (b, right)d ) 3, ωeg ) 8000 cm-1, γ
) 5 cm-1. With an increase in the displacementd between the upper
and lower states, there is an increase in the number of vibrational states
excited. Calculations which include only ground state or only excited
state response functions both yield exactly the same 2D spectrum. Each
electronic state contributes half of the total 2D intensity.
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wavepackets are created on both electronic states. The full
process should be understood at the field/amplitude level. It is
rigorously correct to describe theωτ frequency as an initial
dipole oscillation frequency during the evolution period and the
ωt frequency as the final dipole radiation frequency during the
detection period. These frequencies are given by the Bohr
frequencies for the first (leftmost) straight arrow (ωτ) and final
wavy line (ωt) in the energy ladder sub-diagrams of Figure 3.

As in pump-probe spectroscopy,73 a positive peak in the 2D
spectrum indicates a “bleach” (reduction in ground state
absorption or increase in excited state emission). Energy ladder
subdiagrams d1-d4 in Figure 3 produce positive 2D peaks which
correspond to pump-induced increases in probe transmission.
More generally, the phase of a peak in the 2D spectrum is
determined by the phase of the final dipole oscillation relative
to the initial dipole excitation. Subdiagrams like d5 and d6
produce positive 2D signals, possibly with phase-twisted shapes
because of N/P imbalance (note the twisted diagonal peaks in
Figure 5). A negative intensity 2D peak suggests increased light
absorption in pump-probe and subdiagrams similar to d7 and
d8 play a role in producing negative peaks seen above the
diagonal in Figure 5b.

Vibrational relaxation eliminates sublevel coherences repre-
sented by subdiagrams d5-d8 and allows a rigorous attribution
of real 2D spectra to changes in absorption (and emission) at
ωt caused by previous absorption atωτ. Figure 6 shows the
assignment of positive vibronic peaks in a 2D relaxation

spectrum where the excited state has vibrationally dephased
without vibrational population relaxation (vibrationalT1 . T
. vibrational T2). The vertical axis is theωτ axis, labeled at
the 0f 0 frequency,ω0 ) ωeg + λ, plus integer multiples of
the reduced oscillator frequency,ω′ ) [ω2 - (γ/2)2]1/2. The
horizontal axis, ωt, is labeled in the same manner. The
vibrational quantum number on the lower electronic state is
always listed first. At least two sets of labels are required to
assign a given peak in the spectrum. The excitation label, listed
under “Evolution” in the figure, determines the peak position
along theωτ axis. The detection label(s), shown at the grid points
and labeled “Detection”, determine the position along theωt

axis. For the column labeledω0 along theωt axis, the ground
state bleach signals, labeled in parentheses, overlap the excited
state emission signals (no parentheses).

Figure 7 shows a vibrationally relaxed 2D spectrum calculated
for mixing timeT ) 100 ps, temperature 800 K, displacement
d ) 3.5, and oscillator frequencyω ) 400 cm-1. In contrast to
the 2D correlation spectrum in Figure 5, the real 2D relaxation
spectrum in Figure 7 is entirely positive and individual peaks
do not exhibit any phase twist. In contrast to Figure 6, vibrational
population relaxation is complete in Figure 7, so all initially
excited levels yield the same level distribution. Labels similar
to those in Figure 6 can be used to assign the absorption mode
2D spectrum in Figure 7a. Figure 7b shows the dispersion mode
spectrum. The excited state emission spectrum (centered atωt

) ωeg - λ) and the ground state absorption spectrum (centered

Figure 6. Illustration of the energy levels and peak assignments in the 2D spectrum of an underdamped oscillator. The vertical axis shows excitation
frequencies (ωτ) and the horizontal axis shows detection frequencies (ωt). These frequencies correspond to the first (leftmost) and last (wavy) Bohr
energy differences shown on the sublevel diagrams in Figure 3. At least two sets of labels are necessary to identify a peak: the excitation transition
and at least one detection transition (shown at grid intersections). The vibrational quantum number of the ground electronic state is always first.
Excitation transitions are marked to the left of the grid and apply to an entire row. Detected transitions are marked directly on the grid. Transitions
in parentheses represent detection of ground state bleaches in V type double resonances, while transitions without parentheses represent excited
state emission inΛ double resonances. Note that coherent four-level contributions to 2D spectra cannot be described as double resonances, may
contribute to the 2D spectrum with either sign, and have excitation and detection transitions which may not share a common level. After vibrational
coherence is gone, two sets of levels suffice to identify each peak. In the absence of hot bands, V type bleaching can only occur forωt g ω0 and
Λ type stimulated emission can only occur forωt e ωτ. ω0 ) ωeg + λ; ω′ is the reduced oscillator frequency.
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at ωt ) ωeg + λ) are of equal intensity (electronic population
relaxation was not included in these calculations). The projected
spectrum is the sum of the steady state absorption and emission
spectra. Nearωt ) ω0, the absorption and emission spectra
overlap. The real 2D spectrum is a product of the real projections
onto theωt andωτ axes, and the imaginary 2D spectrum is a
product of the real 2D projection onto theωτ axis and the
imaginary 2D projection ontoωt. Such product 2D spectra
indicate the system is vibrationally equilibrated at mixing time
T ) 100 ps.

Returning to Figure 5 and theT ) 0 spectra, the main
difference between parts a and b is the number of vibrations in
the observed progression. Belowωτ ) ω0, there are “hot bands”
in the integratedωτ spectrum in Figure 5b caused by nf 0
excitation transitions. Peaks belowωt ) ω0 show up in the
integratedωt spectrum as well, indicating that (n f 0) hot bands
have been bleached. Lowering the temperature to 200 K
eliminates these hot bands.75 One feature that is similar in both
spectra in Figure 5 is the difference in signal intensity above
and below the diagonal. Since the same 2D spectrum was
obtained for the separate ground state and excited state response,
this asymmetry cannot be attributed to vibrationally dephased
emission only above the diagonal.

Since the mean thermal energy is usually large relative to
Zeeman splittings and small relative to the electronic energy
gap, temperature creates prominent differences between 2D
electronic spectra and their NMR counterparts. 2D NMR spectra
are usually symmetric about the diagonal,2,3 while 2D electronic
relaxation spectra have more peaks above the diagonal than

below because emission generally lies to the red of absorption
(Stokes’ rule). As a result, the bulk of the 2D spectrum lies
above ωτ ) ωeg and belowωt ) ωeg + λ in all systems
examined here.

2D spectra of the underdamped oscillator provide a detailed
picture of the vibrational wavepacket motion. Figure 8 shows
real 2D spectra atT ) 0, 20, 40, 60, and 80 fs, with Brownian
oscillator parametersωeg ) 10 000 cm-1, d ) 3, ω ) 400 cm-1,
γ ) 10 cm-1, and a temperature of 600 K. The vibrational period
is 83.3 fs. The projection of the 2D spectrum onto theωt axis
is exactly equal to the spectrally resolved pump-probe signal
(eq 12 withδ-function pulses) and reflects wavepacket position
vsT. The center of the excited state spectrum oscillates between
ωt ) ωeg + λ (T ) 0 and 80 fs) and the value ofωt

corresponding to the outer turning point of the wavepacketωt

) ωeg - 3λ (T ) 40 fs) while the ground state spectrum remains
centered at itsT ) 0 position. Vibrational coherence produces
negative regions in the 2D spectrum that are mostly masked in
the projection by positive 2D peaks. AtT ) 20 fs the
wavepacket has moved near the middle of the excited state well
and the emission peaks nearωt ) ωeg - λ are clearly visible.
Notice the fine band structure perpendicular to the diagonal.
At T ) 40 fs the excited state emission and ground state bleach
bands are maximally separated. The reversed 2D tilt of the
ground state bleach band (centered atωt ≈ ωeg + λ) is consistent
with absorbers initially at the inner potential wall moving to
the outer wall (and vice versa). Similarly, the reversed tilt of
the excited state emission band (atωt ≈ ωeg - 3λ) arises from
large-amplitude motion of the entire wavepacket to the other
side of the excited state potential. As the wavepacket is returning
to the inner turning point atT ) 60 fs, the excited state spectrum
moves in toward the ground state spectrum again and the high
momentum band structure returns, but this time oriented along
the diagonal. AtT ) 80 fs the wavepacket has returned close
to the inner turning point and the spectrum resembles that atT
) 0, though slightly more spread out. For inhomogeneously
broadened electronic bands in solution, the change in overall
projected spectra (summed overωτ) can reveal vibrational
wavepacket position as a function ofT by pump-probe
methods. The correlation of positions within the wavepacket
and differences in the 2D band structure for values ofT
corresponding to different wavepacketmomentaare exciting.
The momentum-dependent 2D band structure parallel to the
diagonal will not be washed away even by severe inhomoge-
neous broadening, so 2D electronic spectra should be useful
for studies of condensed phase wavepacket motion.

IVB. Solvation. For molecules with a significant dipole
moment change upon electronic excitation, inertial solvation
usually accounts for fifty percent or more of the total Stokes’
shift in polar solvents.14 All three of the functions (overdamped
and critically damped Brownian oscillators, and Gaussian in
Table 1) used to approximate inertial solvation inM(t) result
in qualitatively similar 2D spectra. Although the overdamped
oscillator is not a physically reasonable model of inertial
solvation in liquids, it has been used in some calculations. 2D
spectra of critically damped and overdamped Brownian oscil-
lators with the same oscillator frequencyω are almost indis-
tinguishable by eye. In the real part, the extent of the spectra
along the diagonal is identical. AtT ) 0 for oscillators withd
) 3, ω ) 200 cm-1, temperature 298 K, and overdamped
damping constantγ ) 440 cm-1, the cross width (the width
perpendicular to the diagonal) of the critically damped oscillator
spectrum is on the order of 1% greater than the overdamped
spectrum. In the imaginary part, the nodal line in the critically

Figure 7. 2D relaxation spectra at mixing timeT ) 100 ps for an
underdamped Brownian oscillator with parameters:d ) 3.5, ωeg )
8000 cm-1, ω ) 400 cm-1, γ ) 3 cm-1 at a temperature of 800 K.
Real 2D absorption spectra are shown on the top; imaginary 2D
dispersion spectra are shown on the bottom. The 2D absorption mode
spectrum atT ) 100 ps is a product of the projections ontoωt andωτ,
indicating complete relaxation. The oscillator has completely relaxed
and the spectrum is symmetrical aroundωt ) ωeg ) 8000 cm-1 )
1.51 rad/fs. AtT ) 100 ps, each vibronic peak has a line shape
reminiscent of the Bloch 2D Lorentzian. Compare to Figure 6 for the
peak assignments.

2D Electronic Correlation and Relaxation Spectra J. Phys. Chem. A, Vol. 103, No. 49, 199910499



damped spectrum is approximately 5° more tilted away from
vertical. As the damping of the overdamped oscillator gets
larger, these differences will increase, but the shapes of the
spectra will remain similar. Figure 9 shows the absorptive and
dispersive parts of the spectrum for a critically damped
Brownian oscillator and a GaussianM(t) at T ) 0. Both 2D
spectra in Figure 9 resemble a smeared out version of the
underdamped 2D correlation spectrum in Figure 5b. AtT ) 0
all three solvation models give spectra with a slight asymmetry
about the diagonal, i.e., decay more rapidly as a function of (ωt

- ωτ) for ωt < ωτ thanωt > ωτ.

A GaussianM(t) is most commonly used to model the inertial
part of solvation, and as such we have investigated the 2D
spectrum for this model in more detail. The projection-slice
theorem2,55,56 indicates the projection of the 2D spectrum
perpendicular to the diagonalωτ ) -ωt is the Fourier transform
of the signal field at timest ) τ.76 This suggests that the 2D
cross width (∆ωc) perpendicular to the diagonalωt ) -ωτ

represents photon echo decay and should be closely related to
the frequency-frequency correlation functionM(t). Table 2
shows the inverse cross width of the 2D spectrum as a function
of the time constantτg. The simulations were done with 128t
values and 128τ values on a 200 fs× 256 fs grid,λ ) 1800
cm-1, T ) 0, and a temperature of 298 K. Forτg > 140 fs, it
is necessary to enlarge the time range of the calculation so that
there will be sufficient frequency resolution to measure a width
reliably. Forτg < 90 fs, the time step needs to be decreased to
increase the frequency range of the calculation. This relationship
between cross width and inertial Gaussian time constant may
be useful for estimating the inertial solvation time constant for
polar solvents.68,77Calculations on critically damped Brownian

Figure 8. Real parts of the calculated impulsive 2D spectra for an underdamped Brownian oscillator atT ) 0, 20, 40, 60, and 80 fs. The oscillator
parameters areωeg ) 10 000 cm-1, λ ) 1800 cm-1, d ) 3, ω ) 400 cm-1, γ ) 10 cm-1, and temperature) 600 K. The projection of the 2D
spectrum onto theωτ axis resembles the steady state absorption spectrum for all values ofT. The projection onto theωt axis changes withT and
equals the spectrally resolved pump-probe signal. The band structure in the spectrum changes as the wavepacket moves on the excited state
surface. It is perpendicular to the diagonal as the wavepacket moves toward the low-frequency (outer) turning point and parallel to it when the
wavepacket is moving back toward the high-frequency (inner) potential wall. This reflects the ability of 2D spectra to reveal phases, a consequence
of detecting the complete electric field of the photon echo.

Figure 9. Impulsive 2D correlation spectra calculated with critically
damped Brownian oscillator (left) and Gaussian (right) frequency
correlation functionsM(t) used to model inertial solvation. Real parts
of the 2D spectra are shown on top, imaginary below. Contour intervals
are 10% of the real maximum. Dotted contours are negative. In both
cases,ωeg ) 2500 cm-1, λ ) 900 cm-1, and∆2 ) 2kTλ (where the
temperatureT ) 298 K). The frequency of the critically damped
oscillator isω ) 400 cm-1. The Gaussian time constant isτg ) 100 fs.
The critically damped oscillatorM(t) has decayed to its half-maximum
approximately 20 fs before the GaussianM(t), but both decay to∼5%
of their maximum value by 200 fs. The Gaussian spectrum is tilted
more along the diagonal and has a smaller cross width perpendicular
to the diagonal, but the projections of both spectra on the two frequency
axes are almost identical.
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oscillators suggest the cross width is more closely related to
decoherence78 than dephasing.

Since the three-pulse echo peak shift is the simplest parameter
recovered from prior photon echo studies,31,32,34,35,71 it is
important to understand how the peak shift is represented in
2D spectra. The three-pulse echo peak shiftτ* is the value of
τ for which the three-pulse echo signal energy (integrated over
t) is maximum. It is easily extracted from the time domain data
used to calculate 2D spectra. Dephasing processes are quite
conspicuous in the dispersive part of the 2D spectrum. The nodal
line in the dispersive spectrum is tilted from the vertical when
there is a “peak shift” in the integrated three-pulse echo signal.
This tilted nodal line can occur forT greater than the pulse
duration, when rephasing and nonrephasing contributions to the
signal are equally weighted and indicates that the rephasing
contribution to the signal is intrinsically stronger than the
nonrephasing contribution. The three-pulse echo peak shift has
been used to measure this difference in strength. This echo peak
shift tilt in the 2D spectrum does not mix real and imaginary
parts of the spectrum (see the discussion of the inhomogeneous
Bloch model) and is distinctly different in origin from the
“phase-twist” arising from unequally weighted rephasing vs
nonrephasing signal contributions, where the real and imaginary
parts of the spectrum are mixed. The echo tilt effect in 2D
spectra depends on both the peak shift and the variation in
photon echo emission time withτ. For a given value ofT,
multiplication of the spectrum by a frequency-dependent phase
factor exp(iωττ*) will remove echo tilt caused by the peak shift.

To investigate solvation more closely, we calculated 2D
spectra for a model solvent frequency correlation functionM(t)
) Ag exp(-t2/τg

2) + A1 exp(-t/τ1) + A2 exp(-t/τ2), whereAg

) 0.62,A1 ) 0.23,A2 ) 0.15.τg ) 105 fs,τ1 ) 1400 fs, and
τ2 ) 11 ps with total Stokes’ shift, 2λ ) 1208 cm-1. This is a
common form35,79-81 used to fit three pulse scattering signals
with the intramolecular vibrational part ofM(t) removed to
consider only the solvent. Figure 10a shows a spectrum
calculated from such a “solventM(t)” for impulsive pulses. 512
points were used in the FT with respect to thet axis, with 200
unevenly spaced Gaussian quadrature points interpolated onto
the evenly spaced grid with cubic splines. In Figure 10a, the
negative lobe appears only above the diagonal, and the spectrum
has a narrower cross width than the Gaussian part alone. Even
for slowly decaying exponentials, the decay ofM(t) neart ) 0
will be faster than any Gaussian decay (due to the nonzero
derivative of the exponential att ) 0) thus altering the 2D
spectrum. For the first 10 fs the 1.4 ps exponential decay
dominatesM(t). As a correlation function,M(t) should have
zero derivative att ) 0. From a physical point of view the
Gaussian inertial solvation step produces the subsequent ap-
proximately exponential solvent relaxation, so both the complete
decay of the Gaussian part ofM(t) and the exponential decays
near zero are unphysical. Unlike the spectrum calculated from
a purely GaussianM(t), it is not possible to simply read off the
inertial solvation time from the cross width of the spectrum.
The time constants of the exponentials and the relative contribu-

tion of each exponential to the Stokes’ shift can be obtained
from three-pulse echo peak shift measurements.35,80,81 This
means that by varying the Gaussian time constantτg and
reorganization energy, the inertial solvation time can still be
obtained by comparing calculated and measured 2D correlation
spectra.

Since all the calculations described so far to demonstrate the
solvation information contained in the 2D spectrum have used
impulsive 0.1 fs pulses, it is natural to ask whether the same
information can still be obtained using experimentally realizable
pulse lengths. Hybl et al. conjectured that a finite pulse duration
essentially filters 2D spectra by the pulse spectrum in the
frequency domain. Calculations for Brownian oscillators confirm
this suggestion. More stringent tests are described below.
Calculated 2D correlation spectra for the solventM(t) given
above using 10 and 20 fs intensity fwhm transform-limited
pulses are shown in Figure 10, b and c, respectively. The effect
of pulse duration on the 2D cross width is remarkably small.
As the pulse width increases (and the bandwidth decreases) the
extent of the spectra along the diagonal decreased by a factor
of ∼2.5 from impulsive to 20 fs fwhm, but the cross width
decreased only by∼5% from impulsive to 20 fs. When the pulse
length goes from impulsive to 20 fs, there is a 0.003( 0.001
rad/fs (1.5 cm-1) measured decrease in the peak cross width.
This corresponds to a pulse width distortion induced 5 fs
increase in the Gaussian inertial solvation time read off the 2D
spectrum. This slight distortion can be readily accounted for
by fitting the data with the known pulse duration. As long as
the excitation pulses have enough bandwidth to cover the cross
width of the spectrum, it is possible to get an accurate estimate
of the inertial solvation time from a 2D spectrum.

TABLE 2: Gaussian Time Constant τg vs 2D Spectrum
Inverse Cross Width

τg (fs) 2π/∆ωc (fs)

90 67( 6
100 71( 3
110 74( 3
120 77( 3
130 80( 3
140 82( 3
150 86( 6

Figure 10. Room temperature (298 K) methanol solvent 2D correlation
spectra (real part)ωeq ) 5000 cm-1. λ ) 604 cm-1, M(t) ) Ag exp-
(-t2/τg

2) + A1 exp(-t/τ1) + A2 exp(-t/τ2), whereAg ) 0.62, A1 )
0.23, A2 ) 0.15. τg ) 105 fs, τ1 ) 1400 fs,τ2 ) 11 ps for three
excitation pulse widths. (a, top left) impulsive; (b, top right) 10 fs; (c,
bottom) 20 fs. While the extent of the spectrum along the diagonal
varies dramatically, the cross width perpendicular to the diagonal is
almost unchanged. The excitation pulse spectrum essentially acts as a
filter for both dimensions of the 2D spectrum. This lack of distortion
makes it possible to characterize events that cannot be measured with
standard time domain techniques.
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IVC. Absorption Mode 2D. The experimental apparatus for
EASY 2D spectroscopy is complex, and a simpler implementa-
tion which produces pure absorption mode 2D spectra seems
desirable for some applications. In magnetic resonance, experi-
ments which produce amplitude-modulated signals yield pure
absorption mode 2D spectra. The technique proposed here
consists of collinear pulse pair excitation followed by measure-
ment of the spectrum of a third, noncollinear probe pulse.82 This
method sorts the spectrally resolved pump-probe signal ac-
cording to the excitation frequency by Fourier transformation
with respect to the collinear pulse pair delay, which amplitude-
modulates the signal. Since the probe spectrum is real, a
symmetrical scan of the pulse pair will produce a real 2D
spectrum upon Fourier transformation. Since the probe acts as
both excitation source for the nonlinear signal and a temporally
overlapping (homotime)38 reference field for interference detec-
tion, this is homotime absorptive response detection, or HARD
2D spectroscopy. The question arises whether the purely real
HARD 2D spectrum is identical to the real part of the EASY
2D spectrum. This question was first investigated computation-
ally by Gallagher Faeder.68 Computational and analytical results
will be presented here.

Calculations of the pulse-pair pump-probe third-order po-
larization must include response functions for both theksa )
-ka + kb + kc andksb ) ka - kb + kc phase matching directions
(sinceksa ) ksb ) kc). As in the three-pulse echo, pulsesa and
b are scanned so thatT remains constant. The sum of the
excitation and signal fields with wave vectorkc is transformed
with respect to t and the resulting spectrumI(ωt,τ,T) is
transformed with respect toτ. One consequence of the inter-
changeability of collinear pulsesa andb is that the real signal
spectrum is symmetric around zero with respect toτ. At each
ωt, the ωτ spectrum calculated from a signal that is real and
even is itself real and even,66 so the 2D FT spectrum has all its
amplitude in the real part. In Figure 11 a calculated HARD 2D
FT spectrum is compared to the real part of an EASY 2D FT
spectrum. Each spectrum was calculated atT ) 0 using the
Bloch model [g(t) ) Γt], with ωeg ) 6000 cm-1, Γ ) 300 cm-1,
and 10 fs intensity fwhm pulses. The noncollinear EASY 2D
spectrum shows two signal peaks, one at (ωt, ωτ) ) (ωeg, -ωeg)
and the other at (-ωeg, ωeg). The pulse-pair pump-probe time
domain signals were modulated by 10% aroundτ ) tb - ta )
0, when pulses a and b were overlapped. The pulse-pair pump-

probe HARD 2D spectrum shows signal peaks in all four
quadrants [at (ωt, ωτ) ) (ωeg, ωeg), (ωeg, -ωeg), (-ωeg, -ωeg),
and (-ωeg, ωeg)] as well as peaks from the third excitation pulse
and the pump-probe contributions at ((ωeg, 0).

Close examination of the regionωt ) -ωτ ) 0.7 to 1.2 rad/
fs revealed peak shapes that were identical to within the noise
of the calculation and both matched the partially phase-twisted
peakshape in Figure 4.68 The pulse-pair pump-probe 2D FT
spectrum has the same information as the real part of the
noncollinear 2D FT spectrum. Since the Bloch model has no
Stokes’ shift, 2D FT spectra were calculated for a Brownian
oscillator with a GaussianM(t) also. 2D spectra calculated atT
) 0 for M(t) ) exp(-t2/τg

2), with λ ) 900 cm-1, τg ) 100 fs,
temperature) 298 K, and impulsive pulses showed excellent
agreement between the HARD 2D and real EASY 2D peak
shapes.68 Since EASY 2D spectra have dispersion inωt, and
HARD 2D spectra do not, this is an example where 2Dpower
spectra have different peak shapes because of the phase-
matching and scan procedure.

The computational results suggest HARD 2D measures the
real part of the EASY 2D spectrum and this similarity is now
explored analytically. The nonlinear polarization in a HARD
2D experiment is given by

Using the resultS(3)(ksb,τb,τa,τc) ) S(3)(ksa,τa,τb,τc) obtained by
symmetry between the two phase-matching directions, the
HARD 2D nonlinear polarization is

which is the unique even extension of the unsymmetrical EASY
2D nonlinear polarization with respect toτ ) tb - ta. This
provides the unique even and hence real extension of the
spectrum in theωτ dimension. The spectrum detected in a
HARD 2D experiment can be written as

where the radiated field consists of a linear free induction decay
from pulse c, the desired HARD 2D field, and single-pulse
pump-probe signal fields from pulses a and b. The HARD 2D
signal can be isolated by a number of subtraction schemes (e.g.
phase cycling, lock-in detection) or simply separated by Fourier
transformation with respect toτ. The HARD 2D signal consists
only of the cross terms between the HARD 2D field and pulse
c (including free induction decay) and is clearly real.

Using eq 4, eq 22 can be rearranged as

which is an even function of frequencyωt and thus the unique
even extension of iωtP̂HARD

(3) (ωt,ta,tb) Êc(ωt)* with respect to the
signal frequencyωt. This differs from the EASY 2D spectrum
only because it is multiplied byÊc(ωt)*, but it should be kept
in mind that the signal field in the detected EASY 2D spectral

Figure 11. Comparison between the real 2D FT spectrum calculated
for three noncollinear pulses and a 2D spectrum calculated for a
spectrally resolved pulse-pair pump-probe signal with a collinear pump
pulse-pair and a noncollinear probe. The time domain pulse-pair pump-
probe signal showed 10% modulation aroundτ ) 0. Both spectra were
calculated for 10 fs fwhm excitation pulses atT ) 0 using a Bloch
model (g(t) ) Γt) with Γ ) 300 cm-1, and ωeg ) 6000 cm-1. The
noncollinear spectrum shows two peaks, one at (ωτ, ωt) ) (-ωeg, ωeg)
and one at (ωeg, -ωeg) while the collinear 2D spectrum has signal peaks
in all four quadrants as well as peaks from the third excitation pulse
and single-pulse pump-probe signals at (0,ωeg) and (0,-ωeg).

PHARD
(3) (t,ta,tb) ) P(3)(ksa,t,ta,tb) + P(3)(ksb,t,ta,tb) (19)

PHARD
(3) (t,ta,tb) ) P(3)(ksa,t,ta,tb) + P(3)(ksa,t,tb,ta) (20)

I(ωt,ta,tb) ∝ |Êc (ωt) + iωt[P̂c
(1) (ωt) + P̂HARD

(3) (ωt,ta,tb) +

P̂ppa
(3) (ωt,ta,ta) + P̂ppb

(3) (ωt,tb,tb)]|2 (21)

∆IHARD(ωt,ta,tb) ∝ iωtP̂HARD
(3) (ωt,ta,tb) Êc(ωt)* -

iωtP̂HARD
(3) (ωt,ta,tb)* Êc(ωt) (22)

∆IHARD(ωt,ta,tb) ∝ iωtP̂HARD
(3) (ωt,ta,tb) Êc(ωt)* +

i(-ωt) P̂HARD
(3) (-ωt,ta,tb) Êc(-ωt)* (23)
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interferograms are multiplied by the reference field envelope
in a similar manner. For sufficiently broad pulse spectra, the
reference field can be divided out in either case. We conclude
that the HARD 2D spectrum is essentially equivalent to the real
part of an EASY 2D spectrum. In particular, the amplitude-
modulated HARD 2D spectrum has the same partial phase twist
as the EASY 2D spectrum when “improperly time ordered”
diagrams contribute to the signal. The partial phase twist forT
< tp in real HARD 2D spectra arises because the probe is
noncollinear with the pump pulse pair. In a two-level system,
when all three pulses are collinear, inclusion of diagrams for
ksa, ksb, andksc ) ka + kb - kc yields a three-pulse signal with
N/P balance for allT.

Since the center of pulse c definest ) 0, transform-limited
pulses (real frequency domain fieldÊc(ωt)) selectively detect
the real part of the HARD signal field. For transform-limited
pulses without phase shifts, eqs 5 and 22 can be used to show
that the full HARD 3D spectrum generated by complex Fourier
transformation with respect tot, ta, and tb is sensitive only to
the imaginary (dissipative) part ofŜ(3)(ksa, -ωa,ωb,ωc). A similar
result has been obtained for the heterodyne-detected stimulated
photon echo (HSPE) by Albrecht et al.38 We suspect 2D spectra
recorded using the HSPE would be equivalent to HARD 2D.

V. Discussion

Separating the absorptive and dispersive parts of 2D Fourier
transform spectra has a number of advantages: it provides
simple relationships between 2D spectra and other nonlinear
experiments, increases resolution and information content, and
reveals homogeneous line shapes masked by inhomogeneous
broadening. A full separation requires the experiment to equally
weight N and P type coherence pathways in the signal and
careful choice of Fourier transformations to match the data. The
procedure developed by Hybl et al.1 is remarkably successful
in this regard, but does produce partially mixed peak shapes
whenT is less than the pulse duration or four different levels
are simultaneously involved in producing a four-wave mixing
signal.

The real part of the 2D spectrum can be viewed as a Fourier
separation of the spectrally resolved pump-probe signal ac-
cording to initial dipole oscillation frequency. Although the
spectrally resolved pump-probe signal is the change in
transmitted probe spectrum caused by the pump, this change
includes coherent Raman scattering (not just stimulated emission
from the excited state and reduction of ground state absorption
by population depletion).21 This generalized absorption differ-
ence spectrum preserves useful interference effects. The wave-
packet dynamics in Figure 8 vividly illustrate these interference
effectssentire regions of the 2D spectrum appear and disappear
as the vibrational wavepackets oscillate coherently back and
forth. The vibrational dynamics in the 2D spectrum reveal phase
relations between the various transition dipole matrix elements
that cannot yet be directly measured by optical frequency
domain techniques. The generalized absorption correlation in
2D FT spectra provides new information compared to rigorously
absorptive 2D correlation spectra, which reveal only squares
of matrix elements. It is a virtue of 2D FT techniques to preserve
as much of this phase information as possible.

After sublevel coherence has decayed away, twisted peak
shapes do not appear in the 2D electronic relaxation spectra
and there is a good correspondence between 2D electronic
relaxation spectroscopy and 2D NMR relaxation spectra (NOE-
SY) at the vibronic level. Peaks in both 2D relaxation spectra
have real absorption and imaginary dispersion line shapes.

Rigorously, the real part of the 2D spectrum represents
absorption coefficient frequency correlation while the imaginary
part displays correlation between initial absorption frequency
and subsequent frequency-dependent refractive index changes.
A simple absorption-emission correlation picture, when gen-
eralized to moving wavepackets, explains most of the intensity
in all of the 2D spectra calculated here.

The correspondence between 2D electronic correlation spectra
and 2D NMR correlation spectra (COSY) is clouded by twisted
peak shapes arising from rephasing/nonrephasing imbalance in
the electronic correlation spectra and the pulse area dependent
peakshapes in COSY NMR spectra. Four-level signals contribute
to 2D NMR correlation spectra when there is strong spin-spin
coupling,2,64,65and strongly coupled spin systems yield mixed
COSY peak shapes.2,3 2D electronic correlation spectra have
qualitative similarities to strongly coupled spin systems in COSY
2D NMR, but investigations using models with well-resolved,
nonoverlapping transitions seem desirable.

The information content of 2D spectra is dramatically
improved by separation into real and imaginary parts even when
partially twisted peakshapes are obtained, as in theT ) 0
correlation experiments. When mixed peak shapes appear, the
complex 2D spectrum displays correlation of both amplitude
and phase between initial and final dipole oscillation frequencies.
The connection between absorption/dispersion and real/imagi-
nary parts of these mixed 2D signals needs to be addressed.
HARD 2D, an experiment which is sensitive only to the
imaginary (dissipative) part of the fully noncollinear phase-
matched third-order susceptibilityŜ(3)(ksa,-ωa,ωb,ωc), produces
a partly phase-twisted peakshape atT ) 0 for a two-level Bloch
model when cosine transforms are applied to real cosinusoidal
data. The mixed peak shape in the real HARD 2D correlation
spectrum originates from noncollinear phase matching and
therefore reflects bulk phase matching inŜ(3), not a molecular
response.

2D Fourier transform spectroscopy provides an extremely
simple and powerful way to visualize nonlinear experiments as
absorption correlation, but 2D FT methods are not just a
visualization technique. The power of 2D FT techniques over
conventional nonlinear techniques such as pump-probe or
photon echoes comes from the exploitation of coherence and
phase information to generate a new frequency axis (which may
be of a completely new type). A distinguishing feature of 2D
FT methods treated here is that the frequency resolution in each
dimension is limited only by how long a single dipole oscillates
coherently with itself. 2D sorting of final frequencies by initial
frequencies reveals this correlation, which is usually hidden
under the inhomogeneous line shape. 2D FT spectroscopy is in
many ways complementary to single molecule techniques:83-85

single-molecule spectroscopy requires a time average over
repeated optical excitations while 2D spectra require a single
weakly nonlinear excitation which is sorted by frequency to
recover an ensemble of single molecule correlations directly
on the timescale of molecular motion.

2D FT methods are wonderfully immune to pulse duration
effects. A longer pulse appears to simply limit the range of a
2D spectrum by acting as a frequency domain filter. The shortest
available pulses are desirable because a broad spectrum does
not limit frequency resolution in 2D FT spectroscopy. As in
1D FT spectroscopy,57 the frequency resolution of 2D FT spectra
is limited only by the maximum separation between pulses used
to generate the measured signal, not by the pulse bandwidth.
2D FT methods completely solve the problem of trading
frequency resolution for time resolution encountered in femto-
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second spectroscopy.73 This means that it may be possible to
use a “universal” broadband 2D FT spectrometer based on the
shortest pulses available for any nonlinear experiment covered
by the pulse spectrum.

The model methanol 2D spectra calculated here are in
qualitative agreement with the previously reported 2D electronic
correlation spectrum for IR144 in methanol (Figure 3 of Hybl
et al.).1 The negative region above the diagonal in the calcula-
tions shown here in Figure 9 was not previously observed
experimentally, but lies just below the lowest reported contour
in Figure 3 of Hybl et al.1 This negative region persists when
IR 144 intramolecular vibrations are included in the model.
Since the prediction of the negative region above the diagonal,
experimental improvements have allowed its unambiguous
observation.68,77 The ability of 2D spectroscopy to recover an
almost undistorted Gaussian inertial response by examination
of the cross-width is very promising for studies of femtosecond
solvent reorganization. A more detailed investigation of the early
time solvent dynamics is underway.

The techniques HARD 2D and EASY 2D have a close
relationship with contrasting experimental requirements. HARD
2D requires only three beams and relatively low spectrometer
resolution, but does not allow adjustment of the local oscillator
strength for optimized interference detection. HARD 2D also
requires either phase cycling or Nyquist sampling at the highest
frequency in the signal. Warren and co-workers have discussed
advantages of phase cycling in partially collinear two-
dimensional optical experiments.86 Drawbacks of EASY 2D
include the required five beams and passive interferometric
stability. Advantages of EASY 2D include full separation of
coherence orders for temporally nonoverlapping beams, opti-
mized interference detection, and ability to systematically
undersample without phase cycling.

It is an interesting question whether tunable pump/broadband
probe experiments12 can be used to reconstruct55 the broadband
2D FT spectrum. Terms in the four-wave mixing signal
involving four different frequencies (e.g. subdiagrams d7 and
d8 in Figure 3) suggest not. In the absence of a robust
reconstruction technique, the resolution in the pump frequency
dimension of the tunable pump/broadband probe methods is
limited by both the pump spectrum and sample relaxation during
the pump pulse. This differs from the molecule limited frequency
resolution in both dimensions of broadband 2D FT spectra and
confers a practical advantage to 2D FT spectra.

VI. Conclusions

Analysis of two-dimensional Fourier transform correlation
and relaxation experiments for two electronic states each having
two or more sublevels shows that the separation into real and
imaginary parts has powerful advantages. The NMR concept
of coherence order was extended to nonlinear optics to transpose
real/imaginary separation techniques of 2D NMR to 2D optical
spectroscopy. The phase-matching geometry, scan procedure,
and method of Fourier transforming the data have a strong
influence on the real/imaginary separation and even the shape
of the absolute value 2D spectrum. An experimental method
for obtaining only the real part of the 2D spectrum was
proposed. Under favorable circumstances, the 2D real/imaginary
separation can be understood as a separation of nonlinear
absorption coefficient changes (real part of 2D spectrum) from
nonlinear refractive index changes (imaginary part of 2D
spectrum). Phase-twisted peaks, which mix absorption and
dispersion line shapes, can occur when pulses overlap or
coherent sublevel superposition states are excited. An increase

in transform-limited excitation pulse duration is found to limit
the range of a 2D spectrum by spectral filtering without
significantly distorting the underlying structure. The projection
of the complex 2D spectrum onto the detection frequencyωt

equals the transient grating signal field and the real part of this
projection gives the spectrally resolved pump-probe signal.
Reciprocally, 2D electronic spectra can be understood as
separating these 1D signals according to initial dipole oscillation
frequency. Calculated 2D spectra for an underdamped Brownian
oscillator reveal a band structure within the wavepacket that is
not apparent in the spectrally resolved pump-probe signal.
Assignment of 2D spectra with vibronic structure was discussed,
and the signatures of vibrational relaxation in 2D spectra were
explored. Calculated 2D spectra for models of polar solvent
dynamics showed that the diagonal cross-width of the real 2D
spectrum tracks the frequency-frequency correlation function
M(t). These 2D spectra can be qualitatively understood as
separating the absorption spectra of molecules in different
solvent environments by correlating absorption and emission
on a timescale faster than solvent rearrangement. The calcula-
tions presented here exhibit a wealth of information in the
separate real and imaginary peakshapes of 2D Fourier transform
electronic spectra. The high time resolution, single weakly
nonlinear excitation, and ability of 2D separation to reveal the
distribution and correlation of spectral properties in an ensemble
suggest 2D FT spectroscopy may be a powerful complement
to single molecule techniques.
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