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Two-Dimensional Electronic Correlation and Relaxation Spectra: Theory and Model
Calculations
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Hybl et al. demonstrated a technique for recording two-dimensional Fourier transform electronic correlation
and relaxation spectra based on detecting phase modulation of the signal electric field in a noncollinear
femtosecond four-wave mixing experiment. A theoretical analysis of 2D correlation and relaxation experiments
is presented for a system consisting of two electronic states each having two or more sublevels. The separation
between absorption and dispersion mode 2D spectra in these experiments is investigated in detail for nonzero
pulse duration and compared to related 2D NMR experiments based on a nonlinear optical definition of
coherence order. Phase-twisted peaks, which mix absorption and dispersion line shapes, can occur under
some circumstances. A 1D projection of the complex 2D spectrum is shown to equal the transient grating
signal field, and the real part of this projection is related to the spectrally resolved—unaipe signal.
Calculated 2D spectra for a two-level Bloch model, an underdamped Brownian oscillator, and a few models
of polar solvent dynamics based on the correlation function approach to the nonlinear response developed by
Mukamel and co-workers are presented. The real parts of the 2D spectra are primarily positive (indicative of
ground state bleaching and excited state emission) but contain negative regions arising from excitation of
coherent superposition states (e.g. vibrational wavepackets) in both the ground and excited electronic states.
Assignment of the 2D spectra displaying wavepacket motion at the vibronic level is discussed, and the
manifestations of wavepacket motion and vibrational relaxation in the 2D spectra are explored. As suggested
by Hybl et al., an increase in pulse duration is found to affect a 2D spectrum primarily as a spectral filter that
limits the range of the spectrum. The Gaussian correlation function characteristic of inertial solvent motion
is found to be faithfully reflected in a homogeneous 2D cross width which is nearly independent of pulse
duration. An alternative experimental method for obtaining only the real part of 2D spectra is proposed.

. Introduction proteinst? polar solvent reorganization during charge transfes,

the dynamic local hydrogen-bonding structure of water,
electronic coupling and energy transfer in aggredafés The
problem arises from the Fourier transform limit imposed by the
pulses: a short pulse must have a broad spectrum. Following
the pioneering experiments of Shank and co-workerd,
several groups have spectrally resolved short probe pulses after
they traversed a pumped sample. This allows coherent molecular
radiation in the probe direction, which may continue after the
probe exits the sample, to set the Fourier transform limit for

oscillation atw; during the second interval. Two-dimensional probe frequency and time resolution. However, the pump pulse

spectra help separate and correlate peaks; Fourier transfom§ti|l imposes an externally fixed Fourier transform Iin_lited trade-

techniques have the advantage of molecule limited resolution off between time resolution and frequenc_y resol_utlon. Longer

in both time and frequency. 2D FT spectroscopy has proven to PUMP pulses have been useful for selective excitaidhbut

be a tremendously powerful method for NMR studies of large It IS difficult to distinguish among strongly coupled chromo-

molecules and biomolecules. phores, fast relaxation dynamics between bands during a longer
Recent interest in femtosecond 2D FT methods has arisenpulse, or imperfectly selective excitation caused by intrinsically

partly from attempts to investigate systems where partially overlapping b%”ds- ?D FT spectrq C,OUId prowdg the pump
overlapping bands and fast dynamics can combine to partly probe correjlatlon. with moIecuIe-.I|m|ted resolution both
frustrate frequency selective pumprobe experiments (e.g. frequ_ency dlmensmns_. _2D correl_at!on s_pectra s_hOL_JId also r_eveal
vibrational energy transfer and relaxation in liqulsnd tran3|entmhomqgenemes_and dlstlng_ws_h dl_strlbut|ons of s!ngle
chromophore site energies from distributions of couplings
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Recently, there has been much interest in extending the two-
dimensional Fourier transform methods used in magnetic
resonance® to electronic and vibrational spectroscopy using
coherent femtosecond excitatibfr.1° Two-dimensional spectra
correlate molecular oscillation frequencies during two different
time intervals. Fourier transformation of a nonlinear signal with
respect to two time intervals produces a spectrum with two
frequency axes. A peak in a 2D spectrum indicates that
oscillation atwi during the first time interval gave rise to
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extensions of 2D NMR to microwave and infrared spectroscopy Pulsea Pulseb Pulse c Signal
might be usefuf® The number of experimental and theoretical
studies of 2D spectra outside magnetic resonance is relatively ¢ f t=0

a c =

small. High-frequency resolution two-dimensional micro-
wave+2>and rotational Ramah?7 correlation spectra have been
reported. Tanimura and Mukamel proposed fifth-order nonlinear |
femtosecond 2D Raman vibrational spectroscbpgpetit and \

Joffre demonstrated an absolute value 2D spectrum reflecting H_T _%Fl'_T_9 time

preparation| evolution | mixing detection

bulk phase-matching of sum frequency mixing in a thick if;ti _____ ?’f__ Tl L2l S
potassium dihydrogen phospate (KDP) crydtalokmakoff et Lo,

al. reported 2D FT Raman vibrational specttapugh there is
now evidenc® that the 2D Raman spectra are dominated by Figure 1. Timing diagram. Pulses a, b, and c are distinguished by
g?:\(/:iziiﬂ(atr::lz?:;g;%%L;’::Oi2ngfggts)i?ﬁenfiﬁﬁﬁfgx?)gr::gttants their wave vectors. The experimentaily éontrolled times at which the

! —oit center of each pulse arrives at the sampletatg, andt.. The zero of
were designed to measure. In contrast to the difference frequen+imet is chosen to coincide with the center of pulsei.c 0) so that
cies and absolute value spectra recorded in the 2D femtosecond. andt, are negative. As in 2D NMR, the time intervals between pulses
correlation experiments28 Hybl et all recovered separate are labeled preparation (up to and including the first pulse), evolution
absorption and dispersion 2D spectra as a function of two l’tlz)z\b,v;ié?](ﬁ]itl‘ﬁgsg :E:;gigﬁgdaizct%?r‘é gﬂ';‘;?)’ r;‘r']’g'(‘jget'e"t':’(‘g[i}

. A . . b ,
elﬁ_ctrrlonlc(;‘reql:jegges InEllr:_oncollln?arfthree-puésel exgezlmentthe third pulse). 2D electronic spectra are generated by Fourier
which produce correlation spectra for zero delay between transformation of the signal field with respect ti¢detection) ancr
the second and third pulses and 2D relaxation spectra for (evolution). The positive time intervals t;, andts between perturbation
nonzero delay. Hybl et al. also outlined a theoretical treatment theoretic field-matter interactions (which can occur at any time during
of 2D spectra in the optical Bloch limit and demonstrated a 2D a pulse) appear in the double-sided Feynman diagrams representing
Raman-electronic correlation spectréiifhe treatment presented tg:;z&zt?\g?;'%;?;ﬁ'ésgegf“wggﬁ”pmgg%g;gc‘i‘;eﬁ?é‘;"aﬁe”;Tgi;?g
thrzaesflgrrlgg':gg (;?t\fllé)) t?rLe:gglr;;ss&%?Litggslir?;i?ﬂ EZ vl\:/gtjlzzaerrs Ta Tn, aNdtc are pulse-labeled interaction intervals used in calculating

. ' v the nonlinear polarization from the response function.
have used spectrally resolved purmrobe experiments with a .
narrowband tunable pump and a broadband probe to construct/@lué power spectra. In order to separate the real (absorptive)
2D infrared spectra which contain both positive and negative @nd imaginary (dispersive) contributions to 2D FT spectra, itis
regions!2 Recent theoretical work has treated two-dimensional @bsolutely necessary to measure the signal field at the sample.

infrared® terahert® and electroni® correlation spectra in 10 generate 2D spectra, Hybl et ‘aused the method
absolute value mode. introduced by Gallagher et &.to measure the electric field of

a fully noncollinear three-pulse scattering signal at the sample.

In a three-pulse scattering experiméht® pulses with wave

vectorska, Ky, andk. cross in the sample and the signal radiated

into a fourth phase-matched direction with wave vedor

%b — ka is detected. A macroscopically phased array of molecular
ipoles is required for radiation of a coherent pulse of light in

a given direction. The excitation pulse direction and timing can

The power of 2D FT techniques over conventional techniques
such as pumpprobe comes from the exploitation of coherence
and phase information. As in 1D FT spectroscopy, the frequency
resolution of 2D FT spectra is limited only by the maximum
separation between pulses used to generate the measured sign
not by the pulse bandwidth. This completely solves the problem

of trading off time resolution for frequency resolution and opens be chosen to selectively detect the set of density matrix

the door to a “”'Vefsf’" femtosecond spgctrometer. Since 2Dcoherence pathways between molecular states that yield the
spectra reveal correlations between transitions, 2D spectra have __ ™ . . e

. . h . tfequired spatially dependent dipole ph&%&he pulse timing
approximately homogeneous line widths in each frequency

dimension is iI_Iustrate_d in Figu_re 1. Thg first pulse excites electronic dipo_Ies
) . . which oscillate until the arrival of the second pulse. Depending

_Pump-probe techniques also suffer from an exceedingly on the timing of the second pulse, the dipole oscillation
difficult to interpret feature, commonly referred to as the frequency, and the spatial position, these oscillations can be
coherence spike, when the pulses overlap. This makes itampiified (increasing the excited state population and depopulat-
impossible to excite selectively one band in a crowded spectruming the ground state) or suppressed (transferring all population
and follow the undistorted dynamics which give rise to the line pack to the ground state) by the second pulse. The first pulse
width of the band: they all occur during the pulse overlap. A ¢an be either a or b, so the delay= t, — t. can be either
similar problem also plagues standard femtosecond photon echgyositive or negative. The first two pulses excite a spatially
techniques, where the early time behavior of the correlation periodic electronic state population grating in the sample. This
function is ob.scureHBZby the rapid third-order free induction population grating produces both absorption coefficient and
decay of an inhomogeneous ensemble. refractive index grating®. The grating wavelength depends on

Absolute value 2D spectra combine both real absorption line the electronic frequency and the crossing angle between pulses
shapes and imaginary dispersion line shapes. Because dispersioa and b. The grating phase (positions of maximum excited state
line shapes are broad, decaying aswl# wo), absolute value population within the grating) depends on the electronic
spectra are not nearly so useful as separate absorption andrequency and the pulse delay. The tiéetween the second
dispersion spectra for the spectrally congested systems on whichpulse (a or b) and the third pulse (c) allows vibrational
2D FT spectra realize their full power. Even if a 2D spectrum wavepacket motion and relaxation. After pulse c hits the grating,
is purely absorptive or dispersive, absolute value spectra do notthe field radiated into the signal direction is detected as a
reveal the signs of the peaks and thus cannot distinguish excitedfunction of timet. If it is remembered that reradiation from
state absorption from emission or reveal some of the subtlervibrating molecules can generate frequency shifts, this phase-
signed features in 2D spectra to be discussed here. The desigmatched radiation can be viewed as diffraction of pulse c off
of the 2D experiment can affect the shape of peaks in absolutethe grating excited by a and b.
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ForT = 0, the pulse sequence matches 2D NMR correlation wave delayed pulses are produced by multiplying a single
spectroscopy (COSY),which is used to probe spirspin continuous (carrier) wave by a variably delayed envelope.
coupling. ForT > 0 the pulse sequence matches 2D NMR Optical carrier wave delayed pulses can be generated by pulse
nuclear Overhauser effect spectroscopy (NOESWhich is a shaping technique®:#1In the experiments reported by Hybl et
relaxation spectroscopy used to probe dipalgole spin al.! pulse delays were generated by moving a mirror in one
excitation transfer. Standard 2D NMR laelor the time arm of an interferometer. Albrecht et al. have discussed how
intervals are given in Figure 1. The acronym EASY 2D has the method of pulse delay generation is critical for phase-
been proposed for this optical experiment, which is based on aresolved nonlinear optics and recovery of electronic frequencies
five-beam interferometer. EASY stands for echo argument in 2D spectroscopy® The linearly polarized pulses here are
spectroscopy since the key to the experiment is recovery of taken to have the “envelope delayed form” generated by an
electronic frequencies by detecting phase (argument) modulationinterferometer pathlength difference
of the echo signal field at the initial excitation frequertcy:38
Since this phase modulation is stored in a spatial population E,() = e(t — t,) cospp(t — t,)] (1)
grating, it can be detected even after the original electronic i )
coherence has completely decayed, making it possible to se¢Vhere€(t) is the temporal envelope (e.g. a Gaussiih = e
phenomena that take place over relatively long times. 2D exp(—2lln[2]t2/tp2) with intensity full width at half-maximum
electronic spectra are generated by measuring the electric fieldt): ¢(t) is the temporal phase (e.g(t) = wdt), andt, = Al/c
of a three-pulse scattering signal and Fourier transforming with 1 the delay generated by the path differerdg. The third-

respect to the detection time after the third pulsgyielding order nonlinear polqrization with wave-vect@rcan be obtqined
frequency axisy) and the dipole evolution time between the by a triple convglunon of the.phlase-matchgd part of the impulse
first and second pulses, (yielding frequency axis,). response function with the incident electric fields.

To avoid mixing absorption and dispersion mode 2D spectra, _ )
it is necessary to superpose equally weighted signals with equalP (Ksblals) = j;; fo ﬁ) (K Ta T T Bt — 75) x
and opposite “orders of coherence” during the dipole evolution E (t — 7,)E(t — 7)) dr, dr, dr, (2)
period? The Fourier transform procedure must also be chosen
to match the experiment in order to avoid inadvertent Kramers  The center of pulse ¢ definés= 0. The phase-matched part of
Kronig transformation between absorption and dispersion modethe third-order response functi@®(ks,za,7h,7¢) is equal to the
spectra®® Hybl et al! combined a standard three-pulse echo polarization with wave vectdks = ¥ .k, (Wheres, = +1 and
proceduré® for scanning continuously across= 0 at constant o = a, b, c) created by three delta function excitation pulses
T with complex Fourier transformation over the range < t with wave vectork,, k,, andk. at the times,, ©,, andz before
< o to do this. A nonlinear optical definition for order of  the present. Since the time domain electric fields and nonlinear
coherence is proposed here in order to examine this procedurepolarization are real-valued functior8)(ks,z.h,70) is real. By
in more detail. causality, 3% = 0 if any 7, < 0. The vector nature of the fields

A simple and useful (but incomplete) interpretation which and tensorial character &3 are ignored? The frequency
has suggested a number of correct results views the real part ofdomain fields and polarization are defined by the inverse Fourier
the complex 2D spectrum as showing the effect of initial transform
absorption at frequency, on subsequent absorption and
emission at frequency;. A positive peak in the real part of E(w) = fi E(t) exp(iwt) dt 3)
the spectrum indicates that excitation @t increases the
subsequent transmission through the sampledthis usage  and are inherently complex-valued functions over the entire real
differs in sign from typical usage in NMR). For example, ifthe  gxis—o < @; < ». Since two frequencies are used, frequencies
2D spectrum consisted of a positive ridge along the diagonal gre given a subscript denoting the conjugate Fourier transform

line wy = —w,, excitation atw, resulted in a transmission  time variable. Becausg(t) is real
increase only ab; = —wy,, indicating the sample consists of an R R
inhomogeneously broadened ensemble of two-level systems. The E(w)* = E(—w)) 4)

incompleteness of this view arises when coherent excitation of

strongly coupled multilevel systems is considered: it cannot Phase shifts are defined as constant spectral phase shifts in the
be stated which frequency is absorbed in excitation of a coherentfrequency domain, which multiplie(w.) by expli¢a sign)].3®
superposition state. A precisely correct statement is that EASY A triple inverse Fourier transformation of eq 2 with respect to
2D spectra reveal the effect of each initial dipole oscillation ta(—®a), th (wb), andt (o = we + wp — wa) yields the complex
frequency on the amplitude and phase of every final dipole polarization in the frequency domaifiThe frequency variables
oscillation frequency. In some cases, the connection betweenused in the transformations with respectids, andt are chosen
real/imaginary and absorption/dispersion is not yet clear. The So the sign of the excitation frequeney, in the signal frequency

2D spectra are then labeled only real or imaginary and no @s= Y Sxwa matches the sign of the corresponding wave vector.
assignment to absorptive or dispersive parts of the third order

susceptibility is implied. A closely related 2D experiment POk, (0 + 0 — 0),—0, vp)
(acronym HARD 2D) is proposed to selectively detect only the Q) N N .
real part of the EASY 2D spectrum. =8 (K= w00 ) E—w)Ey(w,)E(w)) ®)

3 is the inverse Fourier transform of the third-order response

function S with respect tara, b, andze. Eq(wy) is the inverse
With the exception of a recent treatment of 2D terahertz Fourier transform oE,(t) at zero delayt{ = 0). The frequency

spectroscopy by Okumura and Tanim@itheoretical treatments ~ variables used fot,, t,, andt dictate the conjugate Fourier

of 2D spectroscopy have assumed that delayed pulses have transform frequencies fora(—wa), To(wy), and ze(w) in this

the “carrier wave” form used in magnetic resonafit€arrier transform. According to eq 5, constant spectral phase shijfts

Il. Theory
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of the excitation pulses prodl_Jce_a constant spect_ral ph_ase shift >0 <0 =0 >0
¢s= Y su¢ Of the source polarizatioff:*3The three-dimensional
result in eq 5 also suggests that the effect of finite duration T=0 T20 T=0 T=0
pulses on a 2D spectrum is simply one of spectral filtering (and
possibly phase distortion via chirb)Numerical investigations . k. ky ky
of this suggestion are presented in this paper. Since e'g’ B eg eg’ e'g’
I3)(ks,TaTh,Tc) IS real, the real and imaginary parts of the ee t | ee’ ee’ ele
frequgncy domain third-order phase-matched susceptibility e tle \ e e
obey* kg gg / gg | kﬂ gg -k, ke gg R-k,,
SN ky—wp0p,0)* = S kg —p,—0,) (6) D, ° " D © Ds Ds
The real (dispersive or reactive) part of the frequency domain e'g| k, -k, |€8| -k, | €8 e'g’| ke
phase_-matched non_linear _suscgptibility yields_ no net change in _Eglﬂ [ g's | o'g oo’
material energy, while the imaginary (absorptive or dissipative) k. |ge k. |eg ky | eg ky [ ge
part mediates energy exchange between material and the —R
electromagnetic field344 g8 Ip i 44 P g8 88 '\,
In calculations which invoke the rotating wave approximation, D, ¢ b p, ‘ Dg D, ¢
it is convenient to use complex electric fields, a complex third-
order response function, and a complex third-order polariza- N-type P-type P-type  N-type
tion 36 The complex field associated with the real field in eq 1 Figure 2. Eight double-sided Feynman diagrams for a two electronic
is defined by state system which survive the rotating wave approximation and yield
a third order polarization with wavevectorK, + k, + k). Time
E(t) = (1/2)&(t — t,) expliog(t — t,)] 7) increases vertically from bottom to top ahgt,, andts label positive

time intervals between fietfdmatter interactions. Incoming diagonal
e A R _ arrows (head touching diagram bar) represent absorption amplitude,
so thatE(t) = E(t) + E*(t). The complex envelop&(t — to) = while outgoing diagonal arrows (head pointing away from bar) represent
et — to) expli(@(t — ta) — wolt — ta))] is @ useful way to  emission amplitude. The vertical bars represent the ket (left bar) and
incorporate chirp and phase shifts. The complex field is bra (right bar) indices of the density matrix element, which changes at
independent of the reference frequengy Within the rotating each interaction time (horizontal tiebars). The letters in the center of

wave approximation, the third-order polarization is given by each_diag_ram represent the element of the density mgtri)_( probed during
that time interval. The time ranges foendT at the top indicate when

the two diagrams below contribute to the signal for delta-function

PO (keutitaty) = ﬁ) j;, ﬁ) Key T Ty T X pulses. Finite duration pulses allow the zeroes in these ranges to be
R R R replaced by eithett,, wheret, is the pulse duration. The labels at the
E(t —ta — )8t — t — Bt — 7o) X bottom of each pair indicate whether density matrix element frequencies
expliog(t — t, — )] exp[—iwg(t — t, — 7,)] x duringt; andts are approximately opposite in sign (N-type coherence

; . paths or rephasing diagrams) or approximately equal (P-type coherence
expl-ioJ(t — 7] dr, dr, dr. + complex conjugate (8)  paths or nonrephasing diagrams).
R between interactions is indicated by the labslg (mn = g,
whereSf,’V) is the rotating wave approximation to the phase- g, e, €) wheremnrepresents the density matrix elemep,
matched response functiot, and t, are the experimentally  For finite duration pulses, the positive time intervalst;, and

controlled pulse delays relative to the center of pusgt = t3 can range around = |7|, t, = T, andt; = t, as indicated by

0. Writing the response function in terms of the pulse-labeled the triple convolution in eq 8. DiagramssBDg have an
interaction timesr,, 7o, andz instead of the ordered timés improper time ordering and do not contribute to the signal unless
to, andts simplifies the form of eq 82 pulse ¢ overlapsa or b. During the evolution timer, the

The third-order response functi(ﬁf} (Ksa Ta, Tn, Tc) Can be electronic dipoles are oscillating at frequencies (suctgsn
calculated by third-order perturbation theory. Density matrix diagram B) which appear on the, axis. During the mixing
perturbation theory is convenient because each term in thetime T, the experiment allows density matrix changps: (Or
perturbation series has a definite wave vector, so that only termspyg) to evolve on the ground or excited electronic state. A
which contribute to a macroscopically near phase matched weakness of these diagrams for 2D relaxation spectroscopy is
polarization for the detected signal direction need be re- that they do not show population or coherence transfer during
tained3®4>For a two-electronic-state system, each surviving term this time interval (although this can be included in the response
in the perturbation series for emission in directient k, — ka functions). The detection timeprobes coherent dipole radiation,
is represented by one of the eight double-sided Feynmanand Fourier transformation of the radiated field with respect to
diagrams R—Dg shown in Figure 2 (or by a conjugate diagram t yields thew; axis.

terminating in the matrix elemepge instead ofoeg Which makes Detecting the signal in a particular direction selects the
a complex conjugate contribution to the signal). Rules for relative sign of electronic frequencies observed durirandt.
correspondence between terms in the perturbation $&end When the relative sign is negative (N-type coherence pathway),
diagrams can be found in the books by Sttemd Mukamep® equal and opposite frequency evolution duringand t will

Figure 2 shows double-sided Feynman diagrams representingephase an ensemble of dipoles which oscillate at different
terms in the density matrix perturbation theory expansion of frequencies at = 7, producing a “photon echd”. Diagrams
the nonlinear response for a two-electronic-state system in whichD,, Dz, Ds, and Dy have N-type coherence pathwaysnd
excited state sublevels are labeled e braed ground state  contribute to macroscopic dipole rephasing. When the relative
sublevels are labeled g of.@he excitation pulse interactions  sign is positive (P-type coherence pathwaysdiagrams B,
are represented by arrows intersecting the vertical lines on eachD4, Ds, and ¥), macroscopic rephasing of an inhomogeneous
side of the diagram. The density matrix element change probedensemble is not detected.
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§(+V3V) is given by a pair of function® which depend on the with respect tot (no signal beforet_= 0 for delta functi_on
ordering of s b, and 7. and is determined by the pair of Pulses). Unlike 2D NMR, there is no KramersKronig
applicable double-sided Feynman diagrams in Figure 2. Within relationship forw.. The viewpoint that the Fourier transform
the rotating wave approximation, expressions for Riave  With respect tor separates the frequency domain signal field
been obtained for several relaxation models by Mukamel and &ccording to the initial frequency which caused it suggests that
co-workers?:48 The key quantities in these treatments are the the integral of the 2D signal oves. should equal the = 0
transition frequency correlation functid(t), the reorganization frgquency domaln_SIQnaI field. T@bz 0 case of the projection-
energy/, the coupling strength, and the line-shape function ~ SIic€® or projection-cross-sectiéh theorem confirms this
g(t). The model calculations presented here are based either orfOniecture, providing a useful connection between 2D spectra
a two-level Bloch model or the Brownian oscillator model of and the transient grating field & O three pulse scattering signal
Yan and Mukamet? The Brownian oscillator response functions field)
R obtained by Yan and Mukamel in terms of the lineshape w0 o ~3)
functiong(t) (eq 8.15 of ref 36) are valid in the high-temperature S Sp(wpw, T) do, =i sign(,) PP (w,7=0,T) (11)
limit Aw < kT wherew is the oscillator frequency?.5*A number
of finite pulse duration calculations of femtosecond three pulse This result says the integral of the 2D spectrum ougr
scattering signals using these response functions have beefProjection of the 2D spectrum onto the axis) is equal to the
pub|ished3_5v52,53Equation 8 differs from these earlier calcula- Fourier transform of the time domain transient grating field (
tions only by using envelope pulse delays instead of carrier wave = 0 data slice) at the same valuefin a spectrally resolved
delays. This difference affects the phase of the signal (hencePump-probe experiment, the signal is the change in transmitted
the 2D spectrum calculated here) but not the intensities measured@robe spectrum induced by a noncollinear pup* For
in the earlier studies. identical transform limited excitation pulses, the real part of
A systematic analysis of the molecular factors which deter- the transient grating fieldrg(wy) is closely related to the
mine the phase of the nonlinear polarization and radiated signalspectrally resolved pumgprobe signalAlp,
field in the weak excitation limit is given elsewhefebut the A A o o
results will be briefly summarized ﬁere. It was found that the Alpp(@)) O Brg(@)* Bplay) + Erg(@y) Eplw)* (12)
phase of the signal field is determined by the excitation pulse
phases, the time scale of the nonlinear polarization decay, the
product of four transition dipole matrix elements, and a pulse
delay dependent phase modulation at the frequency of the firs
dipole oscillation in the four-wave mixing process. Even with
perfect phase matching, the emitted fi&lgy(t) can have some
rather complicated dynamics (temporal phase shifts, chirp,
envelope distortions) created through the spontaneous radiatio
by the nonlinear polarization. A Fourier decompositioof the A oo
di%ferential equatFi)on connecting the nonlinearppolarization to Alpy(w) = Re[Ey(@) [~ Sp(@pw,,T) do]  (13)
the emitted field@®-4554shows that

Sincet = 0 is defined by the center of pulgein a transient
grating experiment and by the center of the probe pulse in a
tpump—probe experiment, a transform-limited probe pulse has
a real frequency domain fielty(w) (up to a constant phase
which also appears ikrg (w) and therefore cancels). When
multiplied by the probe spectral filter, the real part of the 2D
norojection is equal to the spectrally resolved purppobe signal

Since the spectrally resolved pumprobe signal is unaffected
A3 by constant phase shifts of either the pump or probe, this
P () (9) relationship should be useful in phasing experimental 2D spectra
to correct for interferometer imperfections.

To avoid mixing absorption and dispersion mode 2D spectra,
it is necessary to superpose equally weighted signals with equal
and opposite “orders of coherence” during the dipole evolution
period? The Fourier transform procedure must also be chosen
to match the experiment in order to avoid inadvertent Kramers

I
n(wy)c

ésig (wt) =

for the perfectly phase-matched case. In ed|i8,the sample
length,nis the refractive index, andis the speed of light. The
product F(wy,7,T) = i sign@) P®(w,r,T) can be easily
recovered from experimental data &sig(w)n(w)/|w| and
removes the complex radiation dynamics from the 2D spectra - . . . .
while retaining its symmetry with respect a8 Since the Kronig transformation between absorption and dispersion mode

. . . - spectra. For example, a truncatededp Fourier transform of
spontaneous radiation dynamics are not present in the |nd|rectlythe symmetric double-sided interferogram generated by a Fourier

detected dimension, this procedure treats both frequency axes . <form absorption spectroméfaslaces the KramersKronig

in a symmetrical way, preserving the symmetry of a homo_ge- transform of the transmitted pulse spectrum into the imaginary
neously broadened 2D line shape. The 2D spectrum is defined 1 .
frequency spectrurf® Hybl et all scanned continuously across

b.y inverse Fourier transformation ey, 7, T) with respect to 7= 0 at fixedT, and used complex Fourier transformation over

t the range—o < 7 < co. A nonlinear optical definition for order
o A ) of coherence is proposed here in order to examine this procedure
Sp(wpw,T) = [~ Flo,t.T) exp(w,) dr  (10) in more detail.

In magnetic resonance, the order of cohergmdaring each
Using IA:(a)t, 7,T) = IE(—wt, 7, T)*, it is straightforward to show time interval between fieldmatter interactions is defined Ipy
Sp(wn,w,, T) = Sp(—wt,—w,, T)* so that knowledge o055 on = AM, whereAM is the difference in magnetic quantum number
half of the @, w,) plane is sufficient to characterize the 2D M between states in the coherent superposti&ecause of
spectrum. For delta function pulses, the real and imaginary partsthe AM = +1 dipole selection rule for circularly polarized
of 2D electronic spectra obey a Krameisronig relationship radiation,AM is uniquely determined by the difference between
with respect tow:. Since KramersKronig relates real and  the number of right and left circularly polarized photons required
imaginary parts over the entire frequency axis, this relationship to conserve angular momentum in a transition. There is no
does not generally hold for finite bandwidth pulses. This molecular quantity analogous M for electronic excitation
Kramers-Kronig relationship arises because the signal is causal with linearly polarized light. In magnetic resonance, the order
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of coherence is operationally selected for by a process calledthe signal, and the rephasing (N type) diagrams which contribute
phase cycling: if all the pulses used to prepare a coherentfor positiver are balanced by nonrephasing (P type) diagrams

superposition are phase shifted $ythen the signal will be
phase shifted bp¢.58 Provided the spectrum of the pulses does

which contribute for negative. Equal and opposite orders of
coherence are equally weighted so that scanning acres§

not extend to zero frequency so that phase shifts can be definedoroduces real 2D absorption and imaginary 2D dispersion peak

as constant changes in the spectral pl&gshis operational

shapes. The improperly time ordered diagrams contribute to the

definition of the order of coherence can be extended to nonlinearsignal if T is less than the pulse duration. The improperly ordered

optics. In time-resolved nonlinear optics, it is well-known that

diagrams may be unbalanced: the nonrephasing (P type)

the pulse ordering and macroscopic phase-matching directiondiagrams @ and Oy contribute only when all three pulses
for noncollinear beams can be used to selectively probe aoverlap while the rephasing (N type) diagramsdnd D; can

reduced set of density matrix elements during each interval
between pulse®¥:451t is shown here that the set of density matrix

also contribute for nonoverlapping positiveless than the
dephasing time. Far less than the pulse duration, the procedure

elements probed during each time interval has a single opera-of scanning across= 0 does not equally weight opposite orders

tionally defined order of coherence for fully noncollinear pulses.
If a sample is excited by noncollinear pulses with wave vectors

of coherence. A partially “phase twisted” peak sHapdich
mixes absorption and dispersion lineshapes in the 2D spectrum

ki and a perfectly phase matched nonlinear signal is detectedcan result from this imbalance in a two-level system. This

with wave vectorks = Yski wheres = +1, then constant
spectral phase shifig; of the excitation pulses yield a phase
shift of the signal given byps = 5s5¢;.3%38 This implies that
the operational order of coherefigafter thejth excitation pulse
in a nonlinear optical experiment is given by

j
=) S

(14)

If all the excitation pulses are noncollinear and temporally
nonoverlapping, the order of coherence during each interval

between pulses is uniquely determined by the phase matching

direction and the time ordering of the pulses. Unlik®, the

operational order of coherence in nonlinear optics is not an
obviously conserved quantity between pulses. Linearity of the
Liouville equatior®°suggests the operational order of coher-

ence is conserved in the sense that the spatial dependenc

expliyiski-r] of density matrix elements is preserved. Relaxation

models which retain linearity for subsysteth®will conserve

the operational order of coherence between pulses.
Examining the double-sided diagrams in Figure 2 shows that

in the four-wave mixing experiments treated here, the order of

coherence during the evolution period after the first interaction

can be eithep; = —1 if pulse a interacts first (diagrams;D

D3, D, and D) or p1 = +1 if pulse b (diagrams Pand Iy) or

¢ (Ds and Dy) interacts first; after the second interactipa,=

0 during the mixing period; angs = +1 during the detection

period after the third interaction. (Only the relative signgof

problem increases in importance for shorter pulses, which
preferentially reduce the contribution from the nonrephasing
improperly time ordered diagrams. However, for sufficiently
short pulses, settind greater than the pulse duration could
eliminate this imbalance without missing any dynamics.

There is also a more subtle source of possible N/P imbalance.
When each electronic state contains two sublevels, every double-
sided Feynman diagram yields eight distinct energy ladder
subdiagrams for each level of the ground state. Figure 3 shows
the eight subdiagrams which start in the upper sublevel of the
ground state for the properly ordered excited state double-sided
diagrams B (nonrephasing) and rephasing). In energy ladder
diagrams, arrows on the right side of the double-sided diagrams
are solid, while arrows on the left side of the double-sided
diagrams are dashed. Time runs from left to right, and the signal
radiation is shown as a wavy line. The rules for these diagrams
gave been summarized by Lee and Albréght.

When the eight rephasing subdiagrams are compared to the
corresponding eight nonrephasing subdiagrams, the first four
subdiagrams in each set exhibit a rephasing/non-rephasing
balance. In general, the first two subdiagrams represent a
reduction in absorption (in 4dind 1d, excited state population
leads to stimulated emission and a transmission increase at the
initial excitation frequency). The next two subdiagrams represent
double resonances (in 4dnd 1d, excited state population leads
to stimulated emission at a different frequency). The ground
state versions of these four subdiagrams involve ground state
depopulation reducing the absorption on every transition out

during different time intervals are significant as a change of all °f the dep“opiulated level. In optics, sub;iiagrarglsmld q are
signs corresponds to complex conjugation.) This establishes that"own as “V” (common ground state) oA” (common excited

the coherence transfer pathwayis EASY 2D electronic

spectroscopy are identical to those in the simplest implementa-

tions of NOESY 2D NMR (nonzerd@) and COSY 2D NMR
(for T = 0). The problem of equally weighting the opposite
orders of coherengey = +1 andp; = —1 during the evolution
period will now be addressed. Hybl etladcanned continuously
acrosst = 0 and used complex Fourier transformation over
the range €, «) for botht andz. N-type coherence paths
with p1 = —1, p, = 0, p3 = +1 can produce macroscopic dipole
rephasing and a real photon echo sigiaP-type coherence
paths withp; = +1, p, = 0, ps = +1 cannot rephase (these
signals are called virtual photon ech®esr “antiecho” in
NMR?). The procedure adopted by Hybl etlakffectively
superposes P-type signals (which dominate for negajiead
N-type signals (which dominate for positivgwith the inverse
Fourier transformation over atl.

For T greater than the pulse duration, only properly time
ordered double-sided Feynman diagrams-D4 contribute to

state) double resonances based on the energy level di&gram.
In NMR, subdiagrams gland d, correspond to “regressive
transitions” which yield pure 2D absorption peakshapes in
weakly coupled spin systems.

In contrast, the four subdiagrams which involve coherent
sublevel excitation (g+dg) may be imbalanced. Two of the four
subdiagrams (dand &) which involve coherent sublevel
excitation have transition dipole products of the tyggidtcdida
which must be real but may be either positive or negadtive.
The other six subdiagrams ifdds) have transition dipole
products of the real and positive forfnap|?|unc?. The two
subdiagrams which can have negative transition dipole products
(d7 and @) correspond to “parallel transitions” which yield 2D
peaks of either sig-®>with mixed absorption/dispersion peak
shapes in strongly coupled spin systéiiifie radiation produced
by these parallel transitions can lie outside the spectrum of the
excitation pulses. Since four different frequencies are involved,
these parallel four-wave mixing transitions may not appear in
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Figure 3. Energy ladder subdiagrams for double-sided Feynman
diagrams B (above) and B (below). Only the eight subdiagrams
starting from the upper sublevel of the ground electronic state are shown.
D; and D are the properly ordered diagrams which evolve on the
excited state during the population period (see Figure 2).iD
nonrephasing (P-type coherence) and contributes primarily for negative
7 while D; is rephasing (N-type coherence) and contributes primarily
for positiver. For both O and D, subdiagrams ¢d, show excited
state emission irk type double resonances. The two sets of subdiagrams
d;—d, are in exact correspondence with respect to the initial frequency,
density matrix element probed during the time intetyabnd density
matrix element probed during (hence radiated frequency). The only
difference is the type of coherence (N fof & P for D)) probed during

t1, so that subdiagrams,€ld, are in rephasing/nonrephasing balance
and will yield real 2D absorption line shapes for @llin contrast, the

two sets of subdiagrams-€lds which involve coherent superposition

J. Phys. Chem. A, Vol. 103, No. 49, 19980495

I1l. Calculations

In eq 8, settingvy = wa = wp = wc and pulling thet; andt,
delay dependent field oscillations outside the integral along with
thet dependent oscillation yields

PP (Keut toty) = expliog(t—1)] x

j(’)"" '/(‘)"" J(‘)‘” gal)(ksara’fb’fc) expliwg (=7, + 7, + 7] x
& (t—t,—1)8,(t—t,—7,)é(t—7,) dr, dr, dr, +
complex conjugate (15)

wheret = t, — ta. The reference frequeneyy in the complex
field can be chosen to match the electronic Bohr frequengy

so thatr, dependent oscillations i are cancelled by the
exponential adjacent to it in eq 15. Provided the reference
frequency is not too different from the pulse center frequency,
one obtains the sort of slowly oscillating complex integral
expected from the rotating wave approximation.

The sum of the explicitly written integral and its complex
conjugate in eq 15 is rapidly oscillating in batlandz, which
would require a high Nyquist sampling rate (two points per cycle
of the highest frequend$pfor the double Fourier transformation.

A much lower sampling rate (one point per cycle of the spectral
bandwidth) can be used to Fourier transform only the explicitly
written triple integral in eq 15, which yields a 2D spectrum
centered atvy = weg — wo, W = —(weg — wo). After Fourier
transformation of the slowly varying triple integral, the rapidly
oscillating explivo(t — 7)] term is included using the Fourier
shift theorerf® by addition and subtraction ef, from w; and

w-, respectively. This recenters the 2D spectrunmat weg,

w; = —weg The contribution of the complex conjugate term in
eq 15 to the 2D spectrum is obtained by inverting both frequency
axes. This procedure saved an order of magnitude in computing
time by reducing the number of triple integrals required to do
the 2D Fourier transform. This undersampling of a phase-
modulated signal does not overlap different 2D peaks, so phase
cycle$ are not required to separate them. Undersampting
without phase cycling should also be possible in the EASY 2D

states after the second interaction cannot even be paired so the i”itia|experiment.

and final frequencies match. The two sets of subdiagramsighave

a dephasing/rephasing imbalance and may produce “phase-twisted” line.

shapes. In both sets of subdiagrams-dk, every transition dipole
appears also in complex conjugate form so that the product of four
transition dipole moments is real and positive. Subdiagranand ¢

In numerical calculations, the interaction timgsn the triple
integrals ranged ovet (- t;) £ 2.5, wheret, is the Gaussian
pulse duration. The three integrals ovgwere computed using
the Numerical Recipes Gauskegendre quadrature routine

involve four different transition dipole moments and their product can gauleg.f” Six quadrature points for each nearly Gaussian
be either a positive or negative real number. If the transition dipole jntegral typically sufficed for convergence (this rapid quadrature
product is negative, these subdiagrams can contribute negative intenSityaIgorithm was generously provided by Dr. Jae-Young Yu). A
peaks to the 2D spectrum. . . . . . e
series of time domain calculations of third-order nonlinear
optical signals used to check the code are described else-
non-FT 2D spectra assembled by combining pump-probe where?388The Fourier transform variabteanged from-2.5,
signals!? The division of the eight energy ladder subdiagrams 10 tmax 7 ranged from—7zmax to 7max . .

into four balanced double resonance diagrams plus 4 imbalanced As & check on the 2D Fourier transformation, optical Bloch
coherent sublevel excitation diagrams and the division into six Model 2D spectra were calculated using pulse durations of 0.1
positive signal diagrams plus two possibly negative subdiagramsfs’ and step sizes of 1 fs in botfand for comparison to the

. . . _analytical expression for this signal in the impulsive limit. Since
discussed above both hold generally in the absence of relaxatlonNMR signals are often described in this limit, there is a vast

It seems ”"e'Y thgt some relaxation Processes (e.0. gener"J‘tioqiterature describing the resulting line shagéssort > 0, the
of coherent vibrational wavepackets by rapid internal conver- third-order polarization of a two-level system in the optical
siont’) can produce negative signals not considered above. Theg|gch limit is given by

rephasing/nonrephasing imbalance produced by these coherent
processes in a multilevel system might yield phase-twisted 2D P®)(t,7,T) = exp[— I'(t+]7])] exp[~T/T,] x
peaks even when the improperly ordered diagrams cannot sin[weg(t —2][1 + 8(Mo(@)] (16)
contribute to the signal. Such phase twisted peaks will not occur
whereweg is the electronic transition frequendy s the dipole

after sublevel coherences decay (i.e. wiiegreatly exceeds
the vibrationalT). decay rate (I7,), andTy is the population grating lifetime. There
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is no phase-matched third-order polarization before pulsts T=0 T>0
the sample at = 0. P® then oscillates, with the oscillation
decaying exponentially it Dipole decay before the arrival of | ‘
the second pulse causes an exponential dec&f®bivith the
delay|z|. Dipole oscillation during modulates the initial phase
of the oscillating third-order polarization. For= 0, there is a
discontinuity in the nonlinear polarization at= 0 where it
instantly increases by a factor of 2 for positivghence the
o(T) 6(r) term wheref(r) is the Heaviside unit step function
andod(0) = 1 but is otherwise zero). This jump was not included
in eq 1 of ref 1 which is valid only foff > O.

€

w, (rad/fs)
]
o
w, (rad/fs)
Lol

The impulsive 2D electronic spectrum in the Bloch limit is g Q
given by 3 (@; B
So(@uw,T) = a(-0)a(w) — ia(-0)dw) + $ 0 :
(120 (Ma(-w)a(w,) + d(—w)dw) — 0 ] o
ia(—w,)d(w,) + id(—o,)a(w,)] + 0.6 w?'?rod}%(i) 1.2 0.6 w?'?md}%g) 1.2

aw)a(—wy + Ia(wf)d(_wt) + Figure 4. Impulsive two-dimensional spectra for the Bloch model with
(172)(T) [a(w,)a(—w,) + d(w,)d(—w,) + I’ = 300 cntl. The 2D spectra on the left (a) were calculatedTer
. . . - 0, and the 2D spectra on the right (b) fér= 2 fs. The upper plots
ia(w,)d(—wy) —id@)a(-w)] (17) show the real (absorptive) part of the 2D spectrum and the lower plots
show the imaginary (dispersive) part of the 2D spectrum. The vertical

where axisw, is the indirectly detected frequency of dipole oscillation during
the evolution period. The horizontal axis is the directly detected

a(w) = r frequency of the emitted signal field dur_ing the detection period.

(Weq — w)2 +717? Contour intervals are 10% of the real maximum. Dotted contours are

€9 negative. The spectra on the top and right axes are the integral of the

(Wey— @) signal over the other axis. On the left, the overlap between pulse ¢ and
d(w) = _+e8 7 (18) a or b during a = 0 scan gives rise to a partially “phase-twisted” 2D

(weg — w)z + 712 spectrum because of a rephasing/nonrephasing coherence imbalance

(see text). All Bloch model 2D spectra are identical to that on the right

are one-dimensional Lorentzian absorptive and dispersive Iine-8”‘iﬁep‘gz‘;;’;‘t?vf”(?gél;"’:ggirsui'qthigr : (t)v:/(t)) git:; Igr?stigislcig;rzian
shape functions.The 2D spectrum is nonzero only in two a&—w,)a(wt) and the dispersive (imaginary) spectrum is the product of
symmetry related quadrants. The calculafed 0 2D spectrum Lorentzian absorption and dispersion line shagesw.)d(w).

in Figure 4a demonstrates a partial “phase twWistlaused by

the imbalance betwegn rephasing and nonrephasing CpntribUtion%ifferent local environments can interconvert) and gradually
to the 2D spectrum in the(T)6(z) term. Thed(T) term in the become homogeneously broadened with increaSiag local
spectrum is known as a phase-twisted line shape in 2D R#¥IR.  gnyironments lose memory of their initial configuration. Vi-
OnceT exceeds the pulse duration at= 2 fs, this partial  prational sublevel relaxation not shown in the diagrams is
twisting is gone (Figure 4b) and the 2D spectrum does not jncluded semiclassically. The Brownian oscillator model in-
change shape witfii. For T > 0, the 2D Bloch spectrum has  ¢jydes both spectral diffusion and the Stokes’ shift, explicitly
real and imaginary parts with Lorentzian absorptive and fqrces all electronic dephasing processes to arise from nuclear

dispersive line shapes. The real part of the 2D spectrum is amqtion on finite time scales, and treats the difference between
product of two absorption line shapes with a characteristic star homogeneous and inhomogeneous broadening as simply a

shapé~3 while the imaginary part is the product of an absorption atter of time scale rather than a difference in mechagfsm.
lineshape inw, and a dispersion line shape dn with a nodal

line atw; = weg* The real absorptive and imaginary dispersive
line shapes inw; result from scattering off an electronic state
popula_tion_grating which creates both absorption coefficientand goal of these simulations is to understand how different
refractive index grating¥. processes in the electronic dynamics of molecules in solution
Since 2D spectra are additive, an inhomogeneous distribution are manifested in 2D spectra. There is no clear dividing line
P(weg Of Bohr transition frequenciesye will elongate the  petween the solute and a strongly interacting solvent. Distinction
spectrum in eq 17 by convolution with((w: — :)/v/2)d((e between intramolecular and solvent motions is not possible
+ w,)/«/E) to produce a positive ridge along the diagohal. without comparisons between related solute/solvent systems.
This is the 2D spectrum for an inhomogeneous ensemble of Molecules in solution usually have some underdamped vibra-
two-level systems with Lorentzian line shapes due to a static tions present in all solvents, some coupling to motions seen in
distribution of local chromophore environments (e.g. low- spectra of the neat solvent, and some damped vibrations of less
temperature glasses). The Bloch model cannot account for thecertain origin®® Of particular interest is inertial solvatidf,©
time-dependent local environment in solution very well, because the earliest step in polar solvation when the solvent takes time
the dynamics cannot be cleanly split into infinitely fast to reactto the new solute charge distribution. Here the electronic
(homogeneous) and infinitely slow (inhomogeneous) processes.frequency correlation functiol(t) is expected to decay initially
In condensed phases, the response function should includeas 1 — Bt2 which is often extended as a GaussiérEven
spectral diffusion and the Stokes’ shift. The Brownian oscillator experiments using short pulses {120 fs) have not been able
response functions of Yan and MukasféPproduce 2D spectra  to characterize the short-time behavior of the frequency cor-
that are clearly inhomogeneously broadened itear0 (before relation functionM(t) in some solvents, and there has been

IV. Results
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TABLE 1: Bohr Frequency Correlation Functions

M(t) equation use
overdamped Brownian oscillafor M(t) = (si/(s+ — s-)) exp(=s-t) — (s-/(s+ — s-)) exp(=sst) inertial solvation
critically damped Brownian oscillator M(t) = exp(—yt/2)[1 + yt/2] inertial solvation
Gaussian M(t) = A exp(—t¥zg?) inertial solvation
decaying exponential M(t) = A exp(—t/tc) picosecond solvation dynamics
underdamped Brownian oscillafor M(t) = exp(—yt/2)[cos't) + (y/2w") sin(w't)] intramolecular vibrations
damped cosinusoid M(t) = A exp(—t/tc) cost + ¢) intramolecular vibrations

a Overdamped oscillator exponential coefficieats= y/2 + [(y/2)? — w?]¥2 ® Underdamped oscillator reduced frequengy= [w? — (y/2)7]Y2.

a=3 d=3 K. The oscillator vibrational motion has a period of 83 fs and
an exponential damping time of 1060 fs. Because of the repeated

w22 oscillation, discrete peaks can be seen in the 2D spectrum. The

. —2.0 — repeated oscillations of the underdamped oscillator were cal-

é 18 \dy % culated on 150 unevenly spaced Gaussian quadrature points in

2 . vﬁ@ £ t; cubic splines were used to interpolate onto a 512-point evenly
—1.6 ——eerd=o . . . .

& O?) 3 3 spaced grid for the FFT. This Fourier-transformed signal was
—14f 2R calculated at 256 values af and the resulting array was
i transformed with respect ta The spectra in Figure 5a (left)
-22 have dimensionless displacement of the excited state minimum
20 from the ground state minimund,= V3. (d = V2w, where

g s g A is the reorganization energy awds the oscillator frequency.)

I g Figure 5b (right) shows a spectrum with= 3. In the real

; -1.6k e spectra (top row) the one-dimensional spectra lining either axis
iab N are the result of integrating the signal over the other axis

12 (projected spectra). For > o, the 2D prc_)jection ontan,
D a6 B 20 a0 D rieiBs0 24 resemblesa filtered absorption spectrum in the calculations

w (rod/fs) w, (rac/fs) performed so far. Outside the models used for calculation, such
Figure 5. Real and imaginary 2D correlation spectra at zero mixing a relationship depends on the relaxation dynamics of the system

time (T = 0) for underdamped Brownian oscillators with a vibrational (€-9- breakdown occurs for internal conversion rates which
frequencyw = 400 cm at a temperature of 800 K. (a, lefl)= v/3, depend on the vibrational energy). For delta function pulses,
weg= 8000 cnl, y = 10 cntl. (b, right)d = 3, weg = 8000 cmi?, y the projection of the 2D spectrum onte; is equal to the
=5 cnr!. With an increase in the displacemehbetween the upper  spectrally resolved pumpprobe signal (see eq 13).
and_lower states,_there is_an_increase in the number of vibrational states The same2D correlation spectrum is observed when the
excited. Calculat|0n§ which |nc_Iude only ground state or only excited g|culation is restricted to include only excited state response
state response functions both yield exactly the same 2D spectrum. Eachy | vions or only ground state response functions. The negative
electronic state contributes half of the total 2D intensity. . . L . .

region persists for nonzero mixing tinle but is not present
disagreement over whether there is evidence for inertial solvationfor nonzerarl in an inhomogeneously broadened two-level Bloch
in photon echo measurements on dyes in soluigk’?1t is model. The negative region of the projection and the negative
useful to calculate 2D spectra for the limiting cases of the peaks inthe 2D spectrum that lead to it are evidently related to
Brownian oscillator and several other functions commonly used coherent wavepacket excitation on either the ground or excited
in approximating the transition frequency correlation function electronic states during the second and third pulses. Off-diagonal
M(t) in order to understand their effect on the overall measured energy level subdiagrams like d@nd 2@ in Figure 3 can
signal. Representative 2D spectra for the various parid(f produce negative intensity peaks in a 2D spectrum if they have
listed in Table 1 were calculated and analyzed to gain insight a negative transition dipole product. Analysis of a four-level
into their respective roles in solvation processes. Since finite system suggests these negative subdiagrams tend to yield
bandwidth pulses simply acted as a spectral filter, 2D spectra stronger 2D peaks fan; < w, when lower energy sublevels of
were calculated with impulsive pulses to view the widest the ground electronic state are preferentially populated. The
bandwidth in the frequency spectra unless otherwise noted.proportion of possibly negative intensity subdiagrams increases

These impulsive 2D spectra obey a Kramesonig relation with the number of sublevels.
with respect taw;, which was used as an additional check on  The negative regions of the ground state 2D spectrum may
the calculations. be related to stimulated Raman excitation of wavepackets on

IVA. Underdamped Oscillator. Perhaps the most illuminat-  the ground state. A similar effect has been predicted for pump
ing case in Table 1 for understanding 2D electronic spectros- probe transients, where the enhanced vibrational amplitude
copy, if not the most relevant to solvation dynamics, is the produces increased ground state absorption in the wings of the
underdamped Brownian oscillator. The damped cosinusoid steady-state absorption, although the negative signals are masked
shows essentially the same behavior, so this discussion will beexcept at low temperaturé Although a single’-function pulse
limited to the underdamped oscillator. An underdamped oscil- cannot excite ground state wavepackets within the Condon
lator repeatedly oscillates before relaxing to a thermal equilib- approximation used in the Brownian oscillator moded-func-
rium coordinate distribution near the bottom of the excited state tion pulse pair can cause stimulated Raman scattering because
potential energy surface, completing its Stokes’ shift. For a there is time for wavepacket evolution on the excited state
Brownian oscillator, all vibrational phase relaxation is caused between pulse¥. The excited state subdiagrams and d¢
by vibrational energy loss. Figure 5 shows mixing tihe= 0 exhibit similar access to possibly unpopulated ground state
real and imaginary spectra for two differently displaced oscil- sublevels. A single “absorption frequency” and “emission
lators with frequencyn = 400 cnT? at a temperature of 800  frequency” are inadequate to fully describe the 2D spectra when
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Figure 6. lllustration of the energy levels and peak assignments in the 2D spectrum of an underdamped oscillator. The vertical axis shows excitation
frequenciesd-) and the horizontal axis shows detection frequencigs These frequencies correspond to the first (leftmost) and last (wavy) Bohr

energy differences shown on the sublevel diagrams in Figure 3. At least two sets of labels are necessary to identify a peak: the excitation transition
and at least one detection transition (shown at grid intersections). The vibrational quantum number of the ground electronic state is always first.
Excitation transitions are marked to the left of the grid and apply to an entire row. Detected transitions are marked directly on the grid. Transitions

in parentheses represent detection of ground state bleaches in V type double resonances, while transitions without parentheses represent excited
state emission i\ double resonances. Note that coherent four-level contributions to 2D spectra cannot be described as double resonances, may
contribute to the 2D spectrum with either sign, and have excitation and detection transitions which may not share a common level. After vibrational
coherence is gone, two sets of levels suffice to identify each peak. In the absence of hot bands, V type bleaching can onlyvpecur,fand

A type stimulated emission can only occur for < w,. wo = weg + 4; @' is the reduced oscillator frequency.

wavepackets are created on both electronic states. The fullspectrum where the excited state has vibrationally dephased
process should be understood at the field/amplitude level. It is without vibrational population relaxation (vibration® > T
rigorously correct to describe the, frequency as an initial > vibrational Ty). The vertical axis is they, axis, labeled at
dipole oscillation frequency during the evolution period and the the 0— 0 frequencymo = weg + 4, plus integer multiples of
w frequency as the final dipole radiation frequency during the the reduced oscillator frequency, = [w? — (y/2)4Y2. The
detection period. These frequencies are given by the Bohrhorizontal axis,w;, is labeled in the same manner. The
frequencies for the first (leftmost) straight arrow.J and final vibrational quantum number on the lower electronic state is
wavy line () in the energy ladder sub-diagrams of Figure 3. always listed first. At least two sets of labels are required to
As in pump-probe spectroscopy,a positive peak inthe 2D assign a given peak in the spectrum. The excitation label, listed
spectrum indicates a “bleach” (reduction in ground state under “Evolution” in the figure, determines the peak position
absorption or increase in excited state emission). Energy ladderalong thew, axis. The detection label(s), shown at the grid points
subdiagrams @-d, in Figure 3 produce positive 2D peaks which and labeled “Detection”, determine the position along dhe
correspond to pump-induced increases in probe transmissionaxis. For the column labeled, along thew; axis, the ground
More generally, the phase of a peak in the 2D spectrum is state bleach signals, labeled in parentheses, overlap the excited
determined by the phase of the final dipole oscillation relative state emission signals (no parentheses).
to the initial dipole excitation. Subdiagrams likg dnd & Figure 7 shows a vibrationally relaxed 2D spectrum calculated
produce positive 2D signals, possibly with phase-twisted shapesfor mixing time T = 100 ps, temperature 800 K, displacement
because of N/P imbalance (note the twisted diagonal peaks ind = 3.5, and oscillator frequenay = 400 cnT?. In contrast to
Figure 5). A negative intensity 2D peak suggests increased lightthe 2D correlation spectrum in Figure 5, the real 2D relaxation

absorption in pumpprobe and subdiagrams similar te ahd spectrum in Figure 7 is entirely positive and individual peaks
dg play a role in producing negative peaks seen above the do not exhibit any phase twist. In contrast to Figure 6, vibrational
diagonal in Figure 5b. population relaxation is complete in Figure 7, so all initially

Vibrational relaxation eliminates sublevel coherences repre- excited levels yield the same level distribution. Labels similar
sented by subdiagrams-éds and allows a rigorous attribution  to those in Figure 6 can be used to assign the absorption mode
of real 2D spectra to changes in absorption (and emission) at2D spectrum in Figure 7a. Figure 7b shows the dispersion mode
w; caused by previous absorption @t. Figure 6 shows the  spectrum. The excited state emission spectrum (centered at
assignment of positive vibronic peaks in a 2D relaxation = weg— 4) and the ground state absorption spectrum (centered
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Figure 7. 2D relaxation spectra at mixing timeé = 100 ps for an
underdamped Brownian oscillator with parametetds= 3.5, weq =
8000 cnl, w = 400 cn1?, y = 3 cnT! at a temperature of 800 K.
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below because emission generally lies to the red of absorption
(Stokes’ rule). As a result, the bulk of the 2D spectrum lies
above w; = weg and beloww; = weg + A in all systems
examined here.

2D spectra of the underdamped oscillator provide a detailed
picture of the vibrational wavepacket motion. Figure 8 shows
real 2D spectra af = 0, 20, 40, 60, and 80 fs, with Brownian
oscillator parameter®eq= 10 000 cm?, d = 3, w = 400 cm' %,
y = 10 cnm?, and a temperature of 600 K. The vibrational period
is 83.3 fs. The projection of the 2D spectrum onto #heaxis
is exactly equal to the spectrally resolved punpgpobe signal
(eq 12 witho-function pulses) and reflects wavepacket position
vsT. The center of the excited state spectrum oscillates between
oy = weg + A (T = 0 and 80 fs) and the value ab
corresponding to the outer turning point of the wavepaeket
= weg— 34 (T = 40 fs) while the ground state spectrum remains
centered at it = 0 position. Vibrational coherence produces
negative regions in the 2D spectrum that are mostly masked in
the projection by positive 2D peaks. At = 20 fs the
wavepacket has moved near the middle of the excited state well
and the emission peaks neay= weg — A are clearly visible.
Notice the fine band structure perpendicular to the diagonal.
At T =40 fs the excited state emission and ground state bleach
bands are maximally separated. The reversed 2D tilt of the
ground state bleach band (centeredat weq+ A) is consistent
with absorbers initially at the inner potential wall moving to
the outer wall (and vice versa). Similarly, the reversed tilt of
the excited state emission band ¢at~ weg — 31) arises from

Real 2D absorption spectra are shown on the top; imaginary 2D |5rge-amplitude motion of the entire wavepacket to the other

dispersion spectra are shown on the bottom. The 2D absorption mode

spectrum afl = 100 ps is a product of the projections omipandw-,
indicating complete relaxation. The oscillator has completely relaxed
and the spectrum is symmetrical around= weg = 8000 cnT?
1.51 rad/fs. AtT = 100 ps, each vibronic peak has a line shape
reminiscent of the Bloch 2D Lorentzian. Compare to Figure 6 for the
peak assignments.

at wy = weg + 1) are of equal intensity (electronic population

relaxation was not included in these calculations). The projected = o
rprOJected spectra (summed ovex) can reveal vibrational

spectrum is the sum of the steady state absorption and emissio
spectra. Neaww; = wq, the absorption and emission spectra
overlap. The real 2D spectrum is a product of the real projections
onto thew; and w, axes, and the imaginary 2D spectrum is a
product of the real 2D projection onto the, axis and the
imaginary 2D projection ontav;. Such product 2D spectra
indicate the system is vibrationally equilibrated at mixing time
T =100 ps.

Returning to Figure 5 and th& = 0 spectra, the main
difference between parts a and b is the number of vibrations in
the observed progression. Belayy = wy, there are “hot bands”
in the integratedv, spectrum in Figure 5b caused by—n 0
excitation transitions. Peaks belaw = wo show up in the
integratedo; spectrum as well, indicating that {- 0) hot bands
have been bleached. Lowering the temperature to 200 K
eliminates these hot ban&sOne feature that is similar in both

side of the excited state potential. As the wavepacket is returning
to the inner turning point at = 60 fs, the excited state spectrum
moves in toward the ground state spectrum again and the high
momentum band structure returns, but this time oriented along
the diagonal. AfT = 80 fs the wavepacket has returned close
to the inner turning point and the spectrum resembles that at
= 0, though slightly more spread out. For inhomogeneously
broadened electronic bands in solution, the change in overall

wavepacket position as a function af by pump-—probe
methods. The correlation of positions within the wavepacket
and differences in the 2D band structure for valuesTof
corresponding to different wavepackabmentaare exciting.

The momentum-dependent 2D band structure parallel to the
diagonal will not be washed away even by severe inhomoge-
neous broadening, so 2D electronic spectra should be useful
for studies of condensed phase wavepacket motion.

IVB. Solvation. For molecules with a significant dipole
moment change upon electronic excitation, inertial solvation
usually accounts for fifty percent or more of the total Stokes’
shift in polar solventd# All three of the functions (overdamped
and critically damped Brownian oscillators, and Gaussian in
Table 1) used to approximate inertial solvationhitft) result
in qualitatively similar 2D spectra. Although the overdamped

spectra in Figure 5 is the difference in signal intensity above oscillator is not a physically reasonable model of inertial
and below the diagonal. Since the same 2D spectrum wassolvation in liquids, it has been used in some calculations. 2D
obtained for the separate ground state and excited state responsepectra of critically damped and overdamped Brownian oscil-
this asymmetry cannot be attributed to vibrationally dephased lators with the same oscillator frequenayare almost indis-
emission only above the diagonal. tinguishable by eye. In the real part, the extent of the spectra
Since the mean thermal energy is usually large relative to along the diagonal is identical. At= 0 for oscillators withd

Zeeman splittings and small relative to the electronic energy = 3, ® = 200 cn1?, temperature 298 K, and overdamped
gap, temperature creates prominent differences between 2Ddamping constany = 440 cnt?, the cross width (the width
electronic spectra and their NMR counterparts. 2D NMR spectra perpendicular to the diagonal) of the critically damped oscillator
are usually symmetric about the diagof&iyhile 2D electronic spectrum is on the order of 1% greater than the overdamped
relaxation spectra have more peaks above the diagonal tharspectrum. In the imaginary part, the nodal line in the critically
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Figure 8. Real parts of the calculated impulsive 2D spectra for an underdamped Brownian oscillater®t20, 40, 60, and 80 fs. The oscillator
parameters areeq = 10 000 cn1?, 1 = 1800 cnT?, d = 3, w = 400 cnT?, y = 10 cnT?, and temperature= 600 K. The projection of the 2D

spectrum onto the, axis resembles the steady state absorption spectrum for all valdesTbe projection onto they; axis changes witfT and

equals the spectrally resolved purgrobe signal. The band structure in the spectrum changes as the wavepacket moves on the excited state
surface. It is perpendicular to the diagonal as the wavepacket moves toward the low-frequency (outer) turning point and parallel to it when the
wavepacket is moving back toward the high-frequency (inner) potential wall. This reflects the ability of 2D spectra to reveal phases, a consequence

of detecting the complete electric field of the photon echo.

damped spectrum is approximately more tilted away from
vertical. As the damping of the overdamped oscillator gets

Critically Damped

w, (rad/fs)

-0.4

-0.2

-1.0

-0.8

\
\

-0.6

w, (rad/fs)

-0.4

-0.2

larger, these differences will increase, but the shapes of the -10
spectra will remain similar. Figure 9 shows the absorptive and
dispersive parts of the spectrum for a critically damped = o8
Brownian oscillator and a Gaussiaf(t) at T = 0. Both 2D § 06
spectra in Figure 9 resemble a smeared out version of the ~
underdamped 2D correlation spectrum in Figure 5bTAt O 3 -04
all three solvation models give spectra with a slight asymmetry o2
about the diagonal, i.e., decay more rapidly as a functiomof ( 10
— w,) for o < w, thanw; > w..

A GaussiarM(t) is most commonly used to model the inertial g o
part of solvation, and as such we have investigated the 2D § -cs6
spectrum for this model in more detail. The projection-slice :
theoremd555¢ indicates the projection of the 2D spectrum —0.4
perpendicular to the diagonal = —w: is the Fourier transform —0.2
of the signal field at times$ = 7.76 This suggests that the 2D 0.2

cross width Awc) perpendicular to the diagonal = —w,

represents photon echo decay and should be closely related to

Figure 9. Impulsive 2D correlation spectra calculated with critically
shows the inverse cross width of the 2D spectrum as a functiondamped Brownian oscillator (left) and Gaussian (right) frequency
correlation functiondM(t) used to model inertial solvation. Real parts
of the 2D spectra are shown on top, imaginary below. Contour intervals
are 10% of the real maximum. Dotted contours are negative. In both
) X ) casesweg = 2500 cntl, 1 = 900 cnT?, and A% = 2kTA (where the

is necessary to enlarge the time range of the calculation so thatemperatureT = 298 K). The frequency of the critically damped
there will be sufficient frequency resolution to measure a width oscillator isw = 400 cnt?. The Gaussian time constantis= 100 fs.
reliably. Forzg < 90 fs, the time step needs to be decreased to The critically damped oscillatdvi(t) has decayed to its half-maximum
approximately 20 fs before the GaussM(t), but both decay te-5%

of their maximum value by 200 fs. The Gaussian spectrum is tilted
A : _ ! ° _ more along the diagonal and has a smaller cross width perpendicular
be useful for estimating the inertial solvation time constant for {0 the diagonal, but the projections of both spectra on the two frequency

the frequency-frequency correlation functioM(t). Table 2
of the time constanty. The simulations were done with 128

values and 128 values on a 200 fsc 256 fs grid,A = 1800
cm L, T=0, and a temperature of 298 K. Fay > 140 fs, it

increase the frequency range of the calculation. This relationship
between cross width and inertial Gaussian time constant may

polar solvent$877 Calculations on critically damped Brownian

axes are almost identical.

0.4 086
w, (rod/fs)

08 1.0

0.2
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0.4 06 0.8
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TABLE 2: Gaussian Time Constantry vs 2D Spectrum Impulsive 10 fs FWHM
Inverse Cross Width

74 (fs) 2l Awc (fs)

90 67+ 6

100 71+3 =12 7 »
110 7443
120 77+3
130 80+ 3
140 82+ 3
150 86+ 6 08T

. . . -0.8 .
oscillators suggest the cross width is more closely related to 08 09 1.0 1.1 1.2 1.3 08 0.9 1.0 1.1 1.2 1.3

decoherenc® than dephasing. w, (rad/fs) w, (rad/fs)
Since the three-pulse echo peak shift is the simplest parameter
recovered from prior photon echo studi§2343571it js 20 fs FWHM
important to understand how the peak shift is represented in
2D spectra. The three-pulse echo peak stfifis the value of -1.3
7 for which the three-pulse echo signal energy (integrated over __ -1.2
t) is maximum. It is easily extracted from the time domain data
used to calculate 2D spectra. Dephasing processes are quite
conspicuous in the dispersive part of the 2D spectrum. The nodal
line in the dispersive spectrum is tilted from the vertical when -0.9
there is a “peak shift” in the integrated three-pulse echo signal.  _g4
This tilted nodal line can occur fof greater than the pulse 0.8 0.9 1.0 1.1 1.2 1.3
duration, when rephasing and nonrephasing contributions to the o, (rad/fs)
signal are equally weighted and indicates that the rephasingFigure 10. Room temperature (298 K) methanol solvent 2D correlation
contribution to the signal is intrinsically stronger than the spectra (real partpeq = 5000 cn™. 4 = 604 cnit, M(t) = Aq exp-
nonrephasing contribution. The three-pulse echo peak shift has(_zt;”f) * éllgxg(_fhi)og ffgzrexg%lt‘/lg% ;g/hfre_Agll: 03-653} Atlhr:ee
been used to measre this difference in strength. This echo peal S8 ° i fey =0 (o T S L op igh 10 e (c.
shift tilt in the 2D spectrum does not mix real and imaginary pottom) 20 fs. While the extent of the spectrum along the diagonal
parts of the spectrum (see the discussion of the inhomogeneousaries dramatically, the cross width perpendicular to the diagonal is
Bloch model) and is distinctly different in origin from the almost unchanged. The excitation pulse spectrum essentially acts as a
“phase-twist” arising from unequally weighted rephasing vs filter for both dimensions of the 2D spectrum. This lack of distortion
nonrephasing signal contributions, where the real and imaginarymakes it p_ossible to_charact(_erize events that cannot be measured with
parts of the spectrum are mixed. The echo tilt effect in 2D Standard time domain techniques.
spectra depends on both the peak shift and the variation intion of each exponential to the Stokes’ shift can be obtained
photon echo emission time with For a given value ofT, from three-pulse echo peak shift measurem@&mitds! This
multiplication of the spectrum by a frequency-dependent phase means that by varying the Gaussian time constgnand
factor exp(iv.7*) will remove echo tilt caused by the peak shift. reorganization energy, the inertial solvation time can still be
To investigate solvation more closely, we calculated 2D obtained by comparing calculated and measured 2D correlation

w, (rad/fs)
I
w, (rad/fs)

—1.0 %

-1.0

w, (rad/fs)
|

spectra for a model solvent frequency correlation funchitgt) spectra.

= Ay exp(tir) + Ay exp(—tit) + Az exp(—t/t2), whereAq Since all the calculations described so far to demonstrate the
= 0.62,A; = 0.23,A, = 0.15.75 = 105 fs,7; = 1400 fs, and solvation information contained in the 2D spectrum have used
72 = 11 ps with total Stokes’ shift,2= 1208 cntl. This is a impulsive 0.1 fs pulses, it is natural to ask whether the same

common forn?®>79-81 ysed to fit three pulse scattering signals information can still be obtained using experimentally realizable
with the intramolecular vibrational part d¥i(t) removed to pulse lengths. Hybl et al. conjectured that a finite pulse duration
consider only the solvent. Figure 10a shows a spectrum essentially filters 2D spectra by the pulse spectrum in the
calculated from such a “solveM(t)” for impulsive pulses. 512  frequency domain. Calculations for Brownian oscillators confirm
points were used in the FT with respect to thexis, with 200 this suggestion. More stringent tests are described below.
unevenly spaced Gaussian quadrature points interpolated ontaCalculated 2D correlation spectra for the solvéf(t) given

the evenly spaced grid with cubic splines. In Figure 10a, the above using 10 and 20 fs intensity fwhm transform-limited
negative lobe appears only above the diagonal, and the spectrunpulses are shown in Figure 10, b and c, respectively. The effect
has a narrower cross width than the Gaussian part alone. Everof pulse duration on the 2D cross width is remarkably small.
for slowly decaying exponentials, the decayMft) neart = 0 As the pulse width increases (and the bandwidth decreases) the
will be faster than any Gaussian decay (due to the nonzeroextent of the spectra along the diagonal decreased by a factor
derivative of the exponential @t = 0) thus altering the 2D of ~2.5 from impulsive to 20 fs fwhm, but the cross width
spectrum. For the first 10 fs the 1.4 ps exponential decay decreased only by5% from impulsive to 20 fs. When the pulse
dominatesM(t). As a correlation functionM(t) should have length goes from impulsive to 20 fs, there is a 0.683.001

zero derivative at = 0. From a physical point of view the rad/fs (1.5 cm?') measured decrease in the peak cross width.
Gaussian inertial solvation step produces the subsequent apThis corresponds to a pulse width distortion induced 5 fs
proximately exponential solvent relaxation, so both the complete increase in the Gaussian inertial solvation time read off the 2D
decay of the Gaussian part B(t) and the exponential decays spectrum. This slight distortion can be readily accounted for
near zero are unphysical. Unlike the spectrum calculated from by fitting the data with the known pulse duration. As long as
a purely GaussiaNi(t), it is not possible to simply read off the  the excitation pulses have enough bandwidth to cover the cross
inertial solvation time from the cross width of the spectrum. width of the spectrum, it is possible to get an accurate estimate
The time constants of the exponentials and the relative contribu-of the inertial solvation time from a 2D spectrum.
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Noncollinear pulses Pulse-pair pump-probe probe HARD 2D spectrum shows signal peaks in all four

quadrants [atdt, w;) = (weg Weg), (Weg —Weg), (—Weq —Wed),

and Cwey weg] as well as peaks from the third excitation pulse

L. P ¢ and the pump-probe contributions atffweg 0).

Close examination of the regianx = —w, = 0.7 to 1.2 rad/

Of = _ fs revealed peak shapes that were identical to within the noise

of the calculation and both matched the partially phase-twisted

T ] o, o ] peakshape in Figure %.The pulse-pair pumpprobe 2D FT

) , , spectrum has the same information as the real part of the
-1 0 1 -1 0 1 noncollinear 2D FT spectrum. Since the Bloch model has no

w (rad/fs) w, (rod/fs) Stokes’ shift, 2D FT spectra were calculated for a Brownian

Figure 11. Comparison between the real 2D FT spectrum calculated oscillator with a GaussiaN((t) also. 2D spectra calculated t

for three noncollinear pulses and a 2D spectrum calculated for a = 0 for M(t) = exp(~t%z¢?), with 1 = 900 cnT?, 74 = 100 fs,

spectrally resolved pulsz_a-pair pumprobe s_ignal With_acollinear pump temperature= 298 K, and impulsive pulses showed excellent

pulse-pair and a noncollinear probe. The time domain pulse-pair pump agreement between the HARD 2D and real EASY 2D peak

probe signal showed 10% modulation arourvd 0. Both spectra were 8 o . L
calculated for 10 fs fwhm excitation pulses Bt= 0 using a Bloch shapes? Since EASY 2D spectra have dispersionag and

model @(t) = T't) with T' = 300 cnr%, and weg = 6000 cnt. The HARD 2D spect(a do not, this is an example where&iver
noncollinear spectrum shows two peaks, onewt @r) = (—weg Weg spectra have different peak shapes because of the phase-
and one atdeg —weg While the collinear 2D spectrum has signal peaks matching and scan procedure.

in all four quadrants as well as peaks from the third excitation pulse  The computational results suggest HARD 2D measures the
and single-pulse pumgprobe signals at (Qyeg) and (0, ~weg- real part of the EASY 2D spectrum and this similarity is now

) . explored analytically. The nonlinear polarization in a HARD
IVC. Absorption Mode 2D. The experimental apparatus for  5p experiment is given by

EASY 2D spectroscopy is complex, and a simpler implementa-

tion which produces pure absorption mode 2D spectra seems P® i t) =Pk _tt.t)+ POkttt 19
desirable for some applications. In magnetic resonance, experi- raro(blaty) (Ksatlats (keptilatn)  (19)
ments which produce amplitude-modulated signals yield pure Using the resul83(Kep7o,Tate) = S3(KsaTaTnTc) Obtained by

absorption mode 2D spectra. The technique proposed heresymmetry between the two phase-matching directions, the
consists of collinear pulse pair excitation followed by measure- | ARD 2D nonlinear polarization is

ment of the spectrum of a third, noncollinear probe péishis
method sorts the spectrally resolved punmpobe signal ac- PA it t) =Pk tt.t)+ Pk tt t 20
cording to the excitation frequency by Fourier transformation raro(blaty) (Ksalilat) (Ksalilpla)  (20)
with respect to the collinear pulse pair delay, which amplitude-
modulates the signal. Since the probe spectrum is real,

symmetrical scan of the pulse pair will produce a real 2D provides the unique even and hence real extension of the

spectrum upon Fourier transformation. Since the probe acts asspectrum in thew, dimension. The spectrum detected in a
both excitation source for the nonlinear signal and a temporally yArp 2p experinrwent can be written as

overlapping (homotimé§ reference field for interference detec-
tion, this is homotime absorptive response detection, or HARD | 0IE T i [P +p® +

2D spectroscopy. The question arises whether the purely real (@ptaty) D 1E (@) c:)t?[’ ¢ (@) 'jA,fD (@ptaty) ,

HARD 2D spectrum is identical to the real part of the EASY Péga(wt,ta.ta) + Pép)b (0ot t)]1 (22)

2D spectrum. This question was first investigated computation-

ally by Gallagher Faedéf.Computational and analytical results ~ where the radiated field consists of a linear free induction decay

w, (rad/fs)
w, (rad/fs)

which is the unique even extension of the unsymmetrical EASY
22D nonlinear polarization with respect to= t, — t,. This

will be presented here. from pulse c, the desired HARD 2D field, and single-pulse
Calculations of the pulse-pair pumprobe third-order po- ~ PUmp-probe signal fields from pulses a and b. The HARD 2D
larization must include response functions for both kie= signal can be isolated by a number of subtraction schemes (e.g.
—Ka + ko + ke andksp = ka — kp + ke phase matching directions ~ Phase cycling, lock-in detection) or simply separated by Fourier
(sinceksa = ksp = ko). As in the three-pulse echo, pulseand transformation with respect to The HARD 2D signal consists

b are scanned so that remains constant. The sum of the Only of the cross terms between the HARD 2D field and pulse

excitation and signal fields with wave vectayis transformed € (including free induction decay) and is clearly real.
with respect tot and the resulting spectrum(w;,z,T) is 2@ .

transformed with respect ta One consequence of the inter-  Alyarp(@utaty) O ioPiarp(@ptaty) Elw)* —
changeability of collinear pulsesandb is that the real signal i0.P3 (ot t) E(w) (22
spectrum is symmetric around zero with respect.tdt each Friaro(@utate)” E(w) (22)
y, the o, spectrum calculated from a signal that is real and yging eq 4, eq 22 can be rearranged as

even is itself real and eveéfiso the 2D FT spectrum has all its

amplitude in the real part. In Figure 11 a calculated HARD 2D 4 ot t) TioP®  (ot.t) Elw)* +

FT spectrum is compared to the real part of an EASY 2D FT Haro(@vlaty) ‘ HARD(A (;) ato) E(@) N

spectrum. Each spectrum was calculated at 0 using the i(—y) Piaro(—@utaty) E(—w)* (23)
Bloch model f(t) = I't], with weg= 6000 cnt, ' = 300 cn1?, o _ _
and 10 fs intensity fwhm pulses. The noncollinear EASY 2D Wwhich is an even function of frequeney and thus the unique

spectrum shows two signal peaks, oneuat ©;) = (weg —Weq) even extension ofi P\ (wytats) Ec(wi)* with respect to the
and the other at{weg weg). The pulse-pair pumpprobe time signal frequencyo:. This differs from the EASY 2D spectrum
domain signals were modulated by 10% arouand t, — t, = only because it is multiplied bf£ (wy)*, but it should be kept

0, when pulses a and b were overlapped. The pulse-pairpump in mind that the signal field in the detected EASY 2D spectral
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interferograms are multiplied by the reference field envelope Rigorously, the real part of the 2D spectrum represents
in a similar manner. For sufficiently broad pulse spectra, the absorption coefficient frequency correlation while the imaginary
reference field can be divided out in either case. We conclude part displays correlation between initial absorption frequency
that the HARD 2D spectrum is essentially equivalent to the real and subsequent frequency-dependent refractive index changes.
part of an EASY 2D spectrum. In particular, the amplitude- A simple absorptioremission correlation picture, when gen-
modulated HARD 2D spectrum has the same partial phase twisteralized to moving wavepackets, explains most of the intensity
as the EASY 2D spectrum when “improperly time ordered” in all of the 2D spectra calculated here.

diagrams contribute to the signal. The partial phase twisT for The correspondence between 2D electronic correlation spectra
< t, in real HARD 2D spectra arises because the probe is and 2D NMR correlation spectra (COSY) is clouded by twisted
noncollinear with the pump pulse pair. In a two-level system, peak shapes arising from rephasing/nonrephasing imbalance in
when all three pulses are collinear, inclusion of diagrams for the electronic correlation spectra and the pulse area dependent
Ksa Ksb, andksc = ka + ky — ke yields a three-pulse signal with  peakshapes in COSY NMR spectra. Four-level signals contribute
N/P balance for alll. to 2D NMR correlation spectra when there is strong sigipin

Since the center of pulse c defines: 0, transform-limited coupling?®465and strongly coupled spin systems yield mixed
pulses (real frequency domain fieldh(wy)) selectively detect ~ COSY peak shapés 2D electronic correlation spectra have
the real part of the HARD signal field. For transform-limited qualitative similarities to strongly coupled spin systems in COSY
pulses without phase shifts, eqs 5 and 22 can be used to showwD NMR, but investigations using models with well-resolved,
that the full HARD 3D spectrum generated by complex Fourier nonoverlapping transitions seem desirable.

transformation with respect t t,, andt, is sensitive only to
the imaginary (dissipative) part 8)(Kss, —wawn,we). A similar
result has been obtained for the heterodyne-detected stimulate
photon echo (HSPE) by Albrecht et®IWe suspect 2D spectra
recorded using the HSPE would be equivalent to HARD 2D.

The information content of 2D spectra is dramatically
improved by separation into real and imaginary parts even when
%artially twisted peakshapes are obtained, as inTthe 0
correlation experiments. When mixed peak shapes appear, the
complex 2D spectrum displays correlation of both amplitude
. ) and phase between initial and final dipole oscillation frequencies.
V. Discussion The connection between absorption/dispersion and real/imagi-

Separating the absorptive and dispersive parts of 2D Fouriernary parts of these mixed 2D signals needs to be addressed.
transform spectra has a number of advantages: it providesHARD 2D, an experiment which is sensitive only to the
simple relationships between 2D spectra and other nonlinearimaginary (dissipative) part of the fully noncollinear phase-
experiments, increases resolution and information content, andmatched third-order susceptibili§?(Ksa —wawpwc), produces
reveals homogeneous line shapes masked by inhomogeneoug Partly phase-twisted peakshapd at 0 for a two-level Bloch
broadening. A full separation requires the experiment to equally Model when cosine transforms are applied to real cosinusoidal
weight N and P type coherence pathways in the signal and data. The ml_xgd peak shape in the real HARD 2D cor_relat|on
careful choice of Fourier transformations to match the data. The SPectrum originates from noncollinear phase matching and
procedure developed by Hybl et’ais remarkably successful therefore reflects bulk phase matchingd®, not a molecular
in this regard, but does produce partially mixed peak shapes/€SPONse.
whenT is less than the pulse duration or four different levels 2D Fourier transform spectroscopy provides an extremely
are simultaneously involved in producing a four-wave mixing simple and powerful way to visualize nonlinear experiments as
signal. absorption correlation, but 2D FT methods are not just a

The real part of the 2D spectrum can be viewed as a Fourier Visualization technique. The power of 2D FT techniques over
separation of the spectrally resolved pungsobe signal ac-  conventional nonlinear techniques such as ptimobe or
cording to initial dipole oscillation frequency. Although the photon echoes comes from the exploitation of coherence and
spectrally resolved pumpprobe signal is the change in Pphase information to generate a new frequency axis (which may
transmitted probe spectrum caused by the pump, this changede of a completely new type). A distinguishing feature of 2D
includes coherent Raman scattering (not just stimulated emissionFT methods treated here is that the frequency resolution in each
from the excited state and reduction of ground state absorptiondimension is limited only by how long a single dipole oscillates
by population depletiom! This generalized absorption differ- coherently with itself. 2D sorting of final frequencies by initial
ence spectrum preserves useful interference effects. The wavefrequencies reveals this correlation, which is usually hidden
packet dynamics in Figure 8 vividly illustrate these interference under the inhomogeneous line shape. 2D FT spectroscopy is in
effects—entire regions of the 2D spectrum appear and disappearmany ways complementary to single molecule techniees:
as the vibrational wavepackets oscillate coherently back and single-molecule spectroscopy requires a time average over
forth. The vibrational dynamics in the 2D spectrum reveal phase repeated optical excitations while 2D spectra require a single
relations between the various transition dipole matrix elements weakly nonlinear excitation which is sorted by frequency to
that cannot yet be directly measured by optical frequency recover an ensemble of single molecule correlations directly
domain techniques. The generalized absorption correlation inon the timescale of molecular motion.
2D FT spectra provides new information compared to rigorously 2D FT methods are wonderfully immune to pulse duration
absorptive 2D correlation spectra, which reveal only squares effects. A longer pulse appears to simply limit the range of a
of matrix elements. Itis a virtue of 2D FT techniques to preserve 2D spectrum by acting as a frequency domain filter. The shortest
as much of this phase information as possible. available pulses are desirable because a broad spectrum does

After sublevel coherence has decayed away, twisted peaknot limit frequency resolution in 2D FT spectroscopy. As in
shapes do not appear in the 2D electronic relaxation spectralD FT spectroscop¥,the frequency resolution of 2D FT spectra
and there is a good correspondence between 2D electronidis limited only by the maximum separation between pulses used
relaxation spectroscopy and 2D NMR relaxation spectra (NOE- to generate the measured signal, not by the pulse bandwidth.
SY) at the vibronic level. Peaks in both 2D relaxation spectra 2D FT methods completely solve the problem of trading
have real absorption and imaginary dispersion line shapes.frequency resolution for time resolution encountered in femto-



10504 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Gallagher Faeder and Jonas

second spectroscopy.This means that it may be possible to in transform-limited excitation pulse duration is found to limit
use a “universal” broadband 2D FT spectrometer based on thethe range of a 2D spectrum by spectral filtering without
shortest pulses available for any nonlinear experiment coveredsignificantly distorting the underlying structure. The projection
by the pulse spectrum. of the complex 2D spectrum onto the detection frequengcy
The model methanol 2D spectra calculated here are in equals the transient grating signal field and the real part of this
qualitative agreement with the previously reported 2D electronic projection gives the spectrally resolved puappobe signal.
correlation spectrum for IR144 in methanol (Figure 3 of Hybl Reciprocally, 2D electronic spectra can be understood as
et al.)! The negative region above the diagonal in the calcula- separating these 1D signals according to initial dipole oscillation
tions shown here in Figure 9 was not previously observed frequency. Calculated 2D spectra for an underdamped Brownian
experimentally, but lies just below the lowest reported contour oscillator reveal a band structure within the wavepacket that is
in Figure 3 of Hybl et ak This negative region persists when not apparent in the spectrally resolved purppobe signal.
IR 144 intramolecular vibrations are included in the model. Assignment of 2D spectra with vibronic structure was discussed,
Since the prediction of the negative region above the diagonal, and the signatures of vibrational relaxation in 2D spectra were
experimental improvements have allowed its unambiguous explored. Calculated 2D spectra for models of polar solvent
observatiorf® 77 The ability of 2D spectroscopy to recover an dynamics showed that the diagonal cross-width of the real 2D
almost undistorted Gaussian inertial response by examinationspectrum tracks the frequenefrequency correlation function
of the cross-width is very promising for studies of femtosecond M(t). These 2D spectra can be qualitatively understood as
solvent reorganization. A more detailed investigation of the early separating the absorption spectra of molecules in different
time solvent dynamics is underway. solvent environments by correlating absorption and emission
The techniques HARD 2D and EASY 2D have a close On a timescale faster than solvent rearrangement. The calcula-
relationship with contrasting experimental requirements. HARD tions presented here exhibit a wealth of information in the
2D requires only three beams and relatively low spectrometer Separate real and imaginary peakshapes of 2D Fourier transform
resolution, but does not allow adjustment of the local oscillator €lectronic spectra. The high time resolution, single weakly
strength for optimized interference detection. HARD 2D also honlinear excitation, and ability of 2D separation to reveal the
requires either phase cycling or Nyquist sampling at the highestdistribution and correlation of spectral properties in an ensemble
frequency in the signal. Warren and co-workers have discussedsuggest 2D FT spectroscopy may be a powerful complement
advantages of phase cycling in partially collinear two- to single molecule techniques.
dimensional optical experimerit.Drawbacks of EASY 2D
include the required five beams and passive interferometric ~Acknowledgment. We thank John Hybl for many useful
stability. Advantages of EASY 2D include full separation of and stimulating conversations and Kurt Zilm for pointing out
coherence orders for temporally nonoverlapping beams, Opti_that imbalanced N and P coherence could lead to distortions in

mized interference detection, and ability to systematically 2D spectra. Warren generously provided a preprint of a related
undersample without phase cycling. manuscript (ref 86) prior to publication. This work was
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